Log in

Chitosan-gold nanoparticles trigger apoptosis in human breast cancer cells in vitro

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Despite profound advancement in the field of cancer treatment, the disease is still one of the deadliest in the world. In this aspect, nanotechnology is emerging as a highly promising area to be focussed upon. In this study, we investigated the cytotoxic effect of synthesized chitosan-functionalized gold nanoparticles (G1) having a diameter of 15–20 nm on hormone-responsive MCF7 and hormone therapy-resistant MDA-MB-231 breast cancer cell lines. We found significant mortality of these two cancer cell types with the IC50 as low as ~ 11 ppb just after 48 h of treatment without exhibiting any cytotoxic effect on normal human peripheral blood lymphocytes. In both cancer cell lines, G1 induced severe cytomorphological alterations and reactive oxygen species overload with subsequent activation and nuclear translocation of master stress-regulator Nrf2 as an antioxidant response. Consequently, nuclear fragmentation and subsequent apoptotic cell death were evident that progressed primarily through activation of the Bax–Caspase9–Caspase3–PARP1 axis being concomitant with p53–p21 mediated cell cycle arrest. Moreover, disturbed homeostasis of cellular elements like copper, chlorine, potassium, sulfur, selenium and calcium further strengthened our findings. Therefore, G1 can be concluded as highly effective against two major types of breast cancer cells without any significant toxic effect in normal cells which might popularize it as a potent candidate for breast cancer therapeutics warranting further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-Otaibi WA, Alkhatib MH, Wali AN. Cytotoxicity and apoptosis enhancement in breast and cervical cancer cells upon coadministration of mitomycin C and essential oils in nanoemulsion formulations. Biomed Pharmacother. 2018;106:946–55.

    Article  CAS  PubMed  Google Scholar 

  2. Amaral I, Silva C, Correia-Branco A, et al. Effect of metformin on estrogen and progesterone receptor-positive (MCF-7) and triple-negative (MDA-MB-231) breast cancer cells. Biomed Pharmacother. 2018;102:94–101.

    Article  CAS  PubMed  Google Scholar 

  3. Bandyopadhyay A, Banerjee PP, Shaw P, et al. Cytotoxic and mutagenic effects of Thuja occidentalis mediated silver nanoparticles on human peripheral blood lymphocytes. Mater Focus. 2017;6:290–6.

    Article  CAS  Google Scholar 

  4. Bandyopadhyay A, Roy B, Shaw P, et al. Cytotoxic effect of green synthesized silver nanoparticles in MCF7 and MDA-MB-231 human breast cancer cells in vitro. Nucleus. 2019. https://doi.org/10.1007/s13237-019-00305-z.

    Article  Google Scholar 

  5. Banerjee PP, Bandyopadhyay A, Harsha SN, et al. Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. Breast Cancer Targets Ther. 2017;9:265–78.

    Article  CAS  Google Scholar 

  6. Banerjee PP, Bandyopadhyay A, Mondal P, et al. Cytotoxic effect of graphene oxide-functionalized gold nanoparticles in human breast cancer cell lines. Nucleus. 2019;62:243–50.

    Article  Google Scholar 

  7. Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009;55:1–23.

    Article  CAS  PubMed  Google Scholar 

  8. Bhola PD, Letai A. Mitochondria—judges and executioners of cell death sentences. Mol Cell. 2016;61:695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyles MSP, Kristl T, Andosch A, et al. Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. J Nanobiotechnol. 2015;13:84–104.

    Article  CAS  Google Scholar 

  10. Bøyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol. 1976;5:9–15.

    Article  PubMed  Google Scholar 

  11. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  12. Calavia PG, Chambrier I, Cook MJ, et al. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci. 2018;512:249–59.

    Article  CAS  Google Scholar 

  13. Chaudhuri AR, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18:610–21.

    Article  CAS  Google Scholar 

  14. Choi SY, Jang SH, Park J, et al. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells. J Nanopart Res. 2012;14:1–13.

    Google Scholar 

  15. Comsa S, Cimpean AM, Raica M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015;35:3147–54.

    CAS  PubMed  Google Scholar 

  16. Denoyer D, Masaldan S, La Fontaine S, et al. Targeting copper in cancer therapy: ‘Copper That Cancer’. Metallomics. 2015;7:1459–76.

    Article  CAS  PubMed  Google Scholar 

  17. Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 2018;184:537–56.

    Article  CAS  PubMed  Google Scholar 

  18. Eliseev RA, Gunter KK, Gunter TE. Bcl-2 sensitive mitochondrial potassium accumulation and swelling in apoptosis. Mitochondrion. 2002;1:361–70.

    Article  CAS  PubMed  Google Scholar 

  19. Escoll M, Gargini R, Cuadrado A, et al. Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ. Oncogene. 2017;36:3515–27.

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Ballesteros N, Prado-Lopez S, Rodriguez-Gonzalez JB, et al. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloids Surf B. 2017;153:190–8.

    Article  CAS  Google Scholar 

  21. Higashi Y, Mazumder J, Yoshikawa H, et al. Chemically regulated ROS generation from gold nanoparticles for enzyme-free electrochemiluminescent immunosensing. Anal Chem. 2018;90:5773–80.

    Article  CAS  PubMed  Google Scholar 

  22. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair. 2016;42:63–71.

    Article  CAS  PubMed  Google Scholar 

  23. Kim D, Shin K, Kwon SG, et al. Synthesis and biomedical applications of multifunctional nanoparticles. Adv Mater. 2018;30:1–26.

    CAS  Google Scholar 

  24. Ko SK, Kim SK, Share A, et al. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nat Chem. 2014;6:885–92.

    Article  CAS  PubMed  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    Article  CAS  PubMed  Google Scholar 

  26. Ma Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mangadlao JD, Wang X, McCleese C, et al. Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano. 2018;12:3714–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinez-Torres AC, Zarate-Trivino DG, Lorenzo-Anota HY, et al. Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production. Int J Nanomed. 2018;13:3235–50.

    Article  CAS  Google Scholar 

  29. Menon S, Rajeshkumar S, Kumar V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour-Eff Technol. 2017;3:516–27.

    Google Scholar 

  30. Mittal S, Pandey AK. Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed Res Int. 2014;2014:1–14.

    Article  CAS  Google Scholar 

  31. Mohammed M, Syeda J, Wasan K, et al. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9:1–26.

    Article  CAS  Google Scholar 

  32. Mondal S, Ghosh S, Bhattacharya S, et al. Chronic dietary administration of lower levels of diethyl phthalate induces murine testicular germ cell inflammation and sperm pathologies: involvement of oxidative stress. Chemosphere. 2019;229:443–51.

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018;47:6645–53.

    Article  CAS  PubMed  Google Scholar 

  35. Pan Y, Ye C, Tian Q, et al. miR-145 suppresses the proliferation, invasion and migration of NSCLC cells by regulating the BAX/BCL-2 ratio and the caspase-3 cascade. Oncol Lett. 2018;15:4337–43.

    PubMed  PubMed Central  Google Scholar 

  36. Pottle J, Sun C, Gray L, et al. Exploiting MCF-7 cells’ calcium dependence with interlaced therapy. J Cancer Ther. 2013;4:32–40.

    Article  CAS  Google Scholar 

  37. Ramalingam V, Revathidevi S, Shanmuganayagam T, et al. Biogenic gold nanoparticles induce cell cycle arrest through oxidative stress and sensitize mitochondrial membranes in A549 lung cancer cells. RSC Adv. 2016;6:20598–608.

    Article  CAS  Google Scholar 

  38. Reyes J, Chen JY, Stewart-Ornstein J, et al. Fluctuations in p53 signaling allow escape from cell-cycle arrest. Mol Cell. 2018;71:581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006;12:440–50.

    Article  CAS  PubMed  Google Scholar 

  40. Roy B, Mukherjee S, Mukherjee N, et al. Design and green synthesis of polymer inspired nanoparticles for the evaluation of their antimicrobial and antifilarial efficiency. RSC Adv. 2014;4:34487–99.

    Article  CAS  Google Scholar 

  41. Shalini S, Dorstyn L, Dawar S, et al. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–39.

    Article  CAS  PubMed  Google Scholar 

  42. Shanmuganathan R, Edison TNJI, LewisOscar F, et al. Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol. 2019;130:727–36.

    Article  CAS  PubMed  Google Scholar 

  43. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  44. Singh P, Pandit S, Mokkapati VR, et al. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018;19:1–16.

    Google Scholar 

  45. Tao JJ, Visvanathan K, Wolff AC. Long term side effects of adjuvant chemotherapy in patients with early breast cancer. Breast. 2015;24:S149–53.

    Article  PubMed  Google Scholar 

  46. Umamaheswari C, Lakshmanan A, Nagarajan NS. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. J Photochem Photobiol B. 2018;178:33–9.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu L, Han MB, Gao Y, et al. Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Mol Med Rep. 2015;12:1151–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Department of Biotechnology, India (Grant No. BT/473/NE/TBP/2013, dated 13.02.2014), University Grants Commission-Department of Atomic Energy-Consortium for Scientific Research, Kolkata, India (Grant No. UGC-DAE-CSR-KC/CRS/15/IOP/03/0639/0654, dated 12.10.2015) and Council of Scientific & Industrial Research (CSIR), India (Award No. 09/202(0057)/2016-EMR-I dated 20.10.2016) for their financial assistance. The authors gratefully acknowledge the help of Prof. Muthammal Sudarshan, UGC-DAE-CSR, Kolkata for extending the EDXRF facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansuman Chattopadhyay.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Somnath Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, A., Roy, B., Shaw, P. et al. Chitosan-gold nanoparticles trigger apoptosis in human breast cancer cells in vitro. Nucleus 64, 79–92 (2021). https://doi.org/10.1007/s13237-020-00328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-020-00328-x

Keywords

Navigation