Log in

Cytotoxic effect of green synthesized silver nanoparticles in MCF7 and MDA-MB-231 human breast cancer cells in vitro

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

With the incessant rise in the cancer burden worldwide it is a dire need to develop anticancer agents that will offer negligible or no side effects and at the same time will be economically feasible. In this study, we utilized the principle of green chemistry where tyrosine and chitosan were used as reducer and stabilizer respectively to synthesize biocompatible silver nanoparticles. They were characterized by ultraviolet–visible spectroscopy, transmission electron microscopy and dynamic light scattering technique and found to be spherical with average diameter of 13–22 nm. Their toxicity was evaluated in MCF7 and MDA-MB-231 human breast cancer cell lines. MTT assay revealed excellent cytotoxic effect with IC50 values as low as 6.4 and 6.56 ppb respectively after 48 h of treatment. Intriguingly, they showed minimum toxicity in normal human peripheral blood lymphocytes at these effective concentrations. Cytomorphological alteration, ROS generation (DCFDA analysis) and nuclear fragmentation (Hoechst staining) were pronounced in both cancer cell lines following treatment. These nanoparticles also promoted expression and nuclear translocation of Nrf2 as an antioxidant response which was revealed by Western blot and immunofluorescence studies respectively. ‘Apoptosis assay’ confirmed the presence of apoptosis and ‘Caspase-8 activity assay’ revealed absence of the extrinsic apoptosis pathway. Western blot data (upregulation of p21, Bax/Bcl2 ratio, Caspase-9, Caspase-3 and cleaved PARP1) established the occurrence of intrinsic apoptosis pathway following cell cycle arrest. To conclude, the green synthesized silver nanoparticles are cytotoxic to cancer cells and can be considered as effective and safe cytotoxic agents in breast cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Otaibi WA, Alkhatib MH, Wali AN. Cytotoxicity and apoptosis enhancement in breast and cervical cancer cells upon coadministration of mitomycin C and essential oils in nanoemulsion formulations. Biomed Pharmacother. 2018;106:946–55.

    CAS  PubMed  Google Scholar 

  2. Amaral I, Silva C, Correia-Branco A, Martel F. Effect of metformin on estrogen and progesterone receptor-positive (MCF-7) and triple-negative (MDA-MB-231) breast cancer cells. Biomed Pharmacother. 2018;102:94–101.

    CAS  PubMed  Google Scholar 

  3. Azizi M, Ghourchian H, Yazdian F, Bagherifam S, Bekhradnia S, Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 2017;7:1–18.

    Google Scholar 

  4. Bandyopadhyay A, Banerjee PP, Shaw P, Mondal MK, Das VK, Chowdhury P, et al. Cytotoxic and mutagenic effects of Thuja occidentalis mediated silver nanoparticles on human peripheral blood lymphocytes. Mater Focus. 2017;6:290–6.

    CAS  Google Scholar 

  5. Banerjee PP, Bandyopadhyay A, Harsha SN, Policegoudra RS, Bhattacharya S, Karak N, et al. Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. Breast Cancer Targets Ther. 2017;9:265–78.

    CAS  Google Scholar 

  6. Barua S, Banerjee PP, Sadhu A, Sengupta A, Chatterjee S, Sarkar S, et al. Silver nanoparticles as antibacterial and anticancer materials against human breast, cervical and oral cancer cells. J Nanosci Nanotechnol. 2017;17:968–76.

    CAS  PubMed  Google Scholar 

  7. Bhattacharyya SS, Das J, Das S, Samadder A, Das D, De A, et al. Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture Phytolacca Decandra. Zhong ** Yi Jie He Xue Bao. 2012;10:546–54.

    CAS  PubMed  Google Scholar 

  8. Bhola PD, Letai A. Mitochondria—judges and executioners of cell death sentences. Mol Cell. 2016;61:695–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bøyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol. 1976;5:9–15.

    PubMed  Google Scholar 

  10. Castro-Aceituno V, Ahn S, Simu SY, Singh P, Mathiyalagan R, Lee HA, et al. Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed Pharmacother. 2016;84:158–65.

    CAS  PubMed  Google Scholar 

  11. Chaudhuri AR, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18:610–21.

    Google Scholar 

  12. Chen MC, Mi FL, Liao ZX, Hsiao CW, Sonaje K, Chung MF, et al. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev. 2013;65:865–79.

    CAS  PubMed  Google Scholar 

  13. Comşa Ş, Cîmpean AM, Raica M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015;35:3147–54.

    PubMed  Google Scholar 

  14. Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda-Bukhsh AR. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids Surf B Biointerfaces. 2013;101:325–36.

    CAS  PubMed  Google Scholar 

  15. Das S, Khuda-Bukhsh AR. PLGA-loaded nanomedicines in melanoma treatment: future prospect for efficient drug delivery. Indian J Med Res. 2016;144:181–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. De Matteis V, Cascione M, Toma C, Leporatti S. Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials. 2018;8:1–23.

    Google Scholar 

  17. Elinav E, Peer D. Harnessing nanomedicine for mucosal theranostics—a silver bullet at last? ACS Nano. 2013;7:2883–90.

    CAS  PubMed  Google Scholar 

  18. Escoll M, Gargini R, Cuadrado A, Anton IM, Wandosell F. Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ. Oncogene. 2017;36:3515–27.

    CAS  PubMed  Google Scholar 

  19. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25:4798–811.

    CAS  PubMed  Google Scholar 

  21. Georgakilas AG, Martin OA, Bonner WM. p21: a two-faced genome guardian. Trends Mol Med. 2017;23:310–9.

    CAS  PubMed  Google Scholar 

  22. Huang X, Qiao Y, Zhou Y, Ruan Z, Kong Y, Li G, et al. Ureaplasma spp. lipid-associated membrane proteins induce human monocyte U937 cell cycle arrest through p53-independent p21 pathway. Int J Med Microbiol. 2018;308:819–28.

    CAS  PubMed  Google Scholar 

  23. Ingallina E, Sorrentino G, Bertolio R, Lisek K, Zannini A, Azzolin L, et al. Mechanical cues control mutant p53 stability through a mevalonate–RhoA axis. Nat Cell Biol. 2018;20:28–35.

    CAS  PubMed  Google Scholar 

  24. ** R, Cao YC, Hao E, Métraux GS, Schatz GC, Mirkin CA. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature. 2003;425:487–90.

    CAS  PubMed  Google Scholar 

  25. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair. 2016;42:63–71.

    CAS  PubMed  Google Scholar 

  26. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993;53:3976–85.

    CAS  PubMed  Google Scholar 

  27. Khan Z, Singh T, Hussain JI, Obaid AY, Al-Thabaiti SA, El-Mossalamy EH. Starch-directed green synthesis, characterization and morphology of silver nanoparticles. Colloids Surf B Biointerfaces. 2013;102:578–84.

    CAS  PubMed  Google Scholar 

  28. Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol. 2012;86:1123–36.

    CAS  PubMed  Google Scholar 

  29. Liang Y, Yan C, Schor NF. Apoptosis in the absence of caspase 3. Oncogene. 2001;20:6570–8.

    CAS  PubMed  Google Scholar 

  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  Google Scholar 

  31. Ma Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mao BH, Chen ZY, Wang YJ, Yan SJ. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018;8:1–16.

    Google Scholar 

  33. Mittal S, Pandey AK. Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed Res Int. 2014;2014:1–14.

    Google Scholar 

  34. Mohammed M, Syeda J, Wasan K, Wasan E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9:1–26.

    CAS  Google Scholar 

  35. Mukherjee S, Mitra I, Fouzder C, Mukherjee S, Ghosh S, Chatterji U, et al. Effect of Pt(II) complexes on cancer and normal cells compared to clinically used anticancer drugs: cell cycle analysis, apoptosis and DNA/BSA binding study. J Mol Liq. 2017;247:126–40.

    CAS  Google Scholar 

  36. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pan Y, Ye C, Tian Q, Yan S, Zeng X, **ao C, et al. miR-145 suppresses the proliferation, invasion and migration of NSCLC cells by regulating the BAX/BCL-2 ratio and the caspase-3 cascade. Oncol Lett. 2018;15:4337–43.

    PubMed  PubMed Central  Google Scholar 

  38. Pascal JM. The comings and goings of PARP-1 in response to DNA damage. DNA Repair. 2018;71:177–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Reyes J, Chen JY, Stewart-Ornstein J, Karhohs KW, Mock CS, Lahav G. Fluctuations in p53 signaling allow escape from cell-cycle arrest. Mol Cell. 2018;71:581–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Romanov VS, Rudolph KL. p21 shapes cancer evolution. Nat Cell Biol. 2016;18:722–4.

    CAS  PubMed  Google Scholar 

  41. Roy B, Mukherjee S, Mukherjee N, Chowdhury P, Babu SP. Design and green synthesis of polymer inspired nanoparticles for the evaluation of their antimicrobial and antifilarial efficiency. RSC Adv. 2014;4:34487–99.

    CAS  Google Scholar 

  42. Satchell P, Gutmann J, Witherspoon D. Apoptosis: an introduction for the endodontist. Int Endod J. 2003;36:237–45.

    CAS  PubMed  Google Scholar 

  43. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–39.

    CAS  PubMed  Google Scholar 

  44. Wang H, Zhang G. Endoplasmic reticulum stress-mediated autophagy protects against β, β-dimethylacrylshikonin-induced apoptosis in lung adenocarcinoma cells. Cancer Sci. 2018;109:1889–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuan YG, Zhang S, Hwang JY, Kong IK. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxid Med Cell Longev. 2018;2018:1–21.

    Google Scholar 

  46. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17:1–34.

    Google Scholar 

  47. Zhu L, Han MB, Gao Y, Wang H, Dai L, Wen Y, et al. Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Mol Med Rep. 2015;12:1151–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to DBT (Grant No. BT/473/NE/TBP/2013 dated 13.02.2014), India and CSIR (Award No. 09/202(0057)/2016-EMR-I dated 20.10.2016), India for their financial assistance. AB and PM are grateful to CSIR for their fellowships. Meritorious Fellowship from UGC, India is gratefully acknowledged by PS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansuman Chattopadhyay.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, A., Roy, B., Shaw, P. et al. Cytotoxic effect of green synthesized silver nanoparticles in MCF7 and MDA-MB-231 human breast cancer cells in vitro. Nucleus 63, 191–202 (2020). https://doi.org/10.1007/s13237-019-00305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-019-00305-z

Keywords

Navigation