Log in

Multiscale acoustical study on graphene oxide impregnated polyurethane foam

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This study examines the multiscale acoustic properties of sound-absorbing polyurethane (PU) foam impregnated with graphene oxide (GO). GO impregnation into the PU foam was achieved through a vacuum-assisted process. The effects of GO impregnation on the macroscopic acoustic behavior, transport parameters, and sound absorption coefficients were investigated. Scanning electron microscopy images revealed that the impregnated GO enveloped the open pores within the porous structure. Geometric parameters derived from the microstructural observations were used to perform acoustic simulations. Models with partially open cells could be used to accurately predict the transport parameters and sound absorption coefficients of foams with low levels of GO impregnation. For foams with high levels of GO impregnation, it was necessary to incorporate closed cells into the model, which significantly enhanced the prediction accuracy for the transport parameters and sound absorption coefficients. This study advances our understanding of the acoustic properties of GO-impregnated PU foams and will be beneficial for develo** more effective sound-absorbing materials.

Graphical abstract

Acoustical characterization of graphene oxide impregnated polyurethane foam

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M.E. Delany, E.N. Bazley, Acoustical properties of fibrous absorbent materials. Appl. Acoust. 3(2), 105–116 (1970). https://doi.org/10.1016/0003-682X(70)90031-9

    Article  Google Scholar 

  2. Y. Miki, Acoustical properties of porous materials-Modifications of Delany-Bazley models. J. Acoust. Soc. Jpn. (E) 11(1), 19–24 (1990). https://doi.org/10.1250/ast.11.19

    Article  Google Scholar 

  3. D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379–402 (1987). https://doi.org/10.1017/S0022112087000727

    Article  CAS  Google Scholar 

  4. Y. Champoux, J.F. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Phys. 70, 1975–1979 (1991). https://doi.org/10.1063/1.349482

    Article  Google Scholar 

  5. D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow, Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 102(4), 1995–2006 (1997). https://doi.org/10.1121/1.419690

    Article  Google Scholar 

  6. J.G. Gwon, S.K. Kim, J.H. Kim, Sound absorption behavior of flexible polyurethane foams with distinct cellular structures. Mater. Des. 89, 448–454 (2016). https://doi.org/10.1016/j.matdes.2015.10.017

    Article  CAS  Google Scholar 

  7. R. Verdejo, R. Stämpfli, M. Alvarez-Lainez, S. Mourad, M.A. Rodriguez-Perez, P.A. Brühwiler, M. Shaffer, Enhanced acoustic dam** in flexible polyurethane foams filled with carbon nanotubes. Compos. Sci. Technol. 69, 1564–1569 (2009). https://doi.org/10.1016/j.compscitech.2008.07.003

    Article  CAS  Google Scholar 

  8. S.H. Baek, J.H. Kim, Polyurethane composite foams including silicone-acrylic particles for enhanced sound absorption via increased dam** and frictions of sound waves. Compos. Sci. Technol. 198, 108325 (2020). https://doi.org/10.1016/j.compscitech.2020.108325

    Article  CAS  Google Scholar 

  9. B.S. Kim, J. Choi, Y.S. Park, Y. Qian, S.E. Shim, Semi-rigid polyurethane foam and polymethylsilsesquioxane aerogel composite for thermal insulation and sound absorption. Macromol. Res. 30(4), 245–253 (2022). https://doi.org/10.1007/s13233-022-0026-8

    Article  CAS  Google Scholar 

  10. S.E. Samaei, U. Berardi, H.A. Mahabadi, P. Soltani, E. Taban, Optimization and modeling of the sound absorption behavior of polyurethane composite foams reinforced with kenaf fiber. Appl. Acoust. 202, 109176 (2023). https://doi.org/10.1016/j.apacoust.2022.109176

    Article  Google Scholar 

  11. J.M. Kim, D.H. Kim, J. Kim, J.W. Lee, W.N. Kim, Effect of graphene on the sound dam** properties of flexible polyurethane foams. Macromol. Res. 25(2), 190–196 (2017). https://doi.org/10.1007/s13233-017-5017-9

    Article  CAS  Google Scholar 

  12. J.H. Lee, I. Jung, Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide. Appl. Acoust. 151, 10–21 (2019). https://doi.org/10.1016/j.apacoust.2019.02.029

    Article  Google Scholar 

  13. J.H. Lee, J.H. Kim, Y.J. Shin, J.H. Jeon, Y.J. Kang, I. Jung, Multilayered graphene oxide impregnated polyurethane foam for ultimate sound absorbing performance: Algorithmic approach and experimental validation. Appl. Acoust. 203, 109194 (2023). https://doi.org/10.1016/j.apacoust.2022.109194

    Article  Google Scholar 

  14. J.H. Oh, J.E. Kim, H.R. Lee, Y.J. Kang, I.K. Oh, Directionally antagonistic graphene oxide-polyurethane hybrid aerogel as a sound absorber. ACS Appl. Mater. Interfaces 10(26), 22650–22660 (2018). https://doi.org/10.1021/acsami.8b06361

    Article  CAS  PubMed  Google Scholar 

  15. J.H. Oh, H.R. Lee, S. Umrao, Y.J. Kang, I.K. Oh, Self-aligned and hierarchically porous graphene-polyurethane foams for acoustic wave absorption. Carbon 147, 510–518 (2019). https://doi.org/10.1016/j.carbon.2019.03.025

    Article  CAS  Google Scholar 

  16. S.S. Yang, J.W. Lee, J.H. Kim, Y.J. Kang, Effect of thermal aging on the transport and acoustic properties of partially reticulated polyurethane foams. J. Acoust. Soc. Am. 152(4), 2369–2381 (2022). https://doi.org/10.1121/10.0014913

    Article  CAS  PubMed  Google Scholar 

  17. T.G. Zieliński, R. Venegas, C. Perrot, M. Červenka, F. Chevillotte, K. Attenborough, Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media. J. Sound Vib. 483, 115441 (2020). https://doi.org/10.1016/j.jsv.2020.115441

    Article  Google Scholar 

  18. Y. Salissou, R. Panneton, Pressure/mass method to measure open porosity of porous solids. J. Appl. Phys. 101, 124913 (2007). https://doi.org/10.1063/1.2749486

    Article  CAS  Google Scholar 

  19. Z.E.A. Fellah, S. Berger, W. Lauriks, C. Depollier, C. Aristegui, J.-Y. Chapelon, Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. J. Acoust. Soc. Am. 113, 2424–2433 (2003). https://doi.org/10.1121/1.1567275

    Article  CAS  PubMed  Google Scholar 

  20. ASTM C522-03: Standard Test Method for Airflow Resistance of Acoustical Materials (ASTM International, West Conshohocken, PA, 2016)

  21. L. Jaouen, E. Gourdon, P. Glé, Estimation of all six parameters of Johnson-Champoux-Allard-Lafarge model for acoustical porous materials from impedance tube measurements. J. Acoust. Soc. Am. 148(4), 1998–2005 (2020). https://doi.org/10.1121/10.0002162

    Article  PubMed  Google Scholar 

  22. S.F. de Sá, J.L. Ferreira, A.S. Matos, R. Macedo, A.M. Ramos, A new insight into polyurethane foam deterioration–the use of Raman microscopy for the evaluation of long-term storage conditions. J. Raman Spectrosc. 47, 1494–1504 (2016). https://doi.org/10.1002/jrs.4984

    Article  CAS  Google Scholar 

  23. J.H. Park, K.S. Minn, H.R. Lee, S.H. Yang, C.B. Yu, S.Y. Pak, C.S. Oh, Y.S. Song, Y.J. Kang, J.R. Youn, Cell openness manipulation of low density polyurethane foam for efficient sound absorption. J. Sound Vib. 406, 224–236 (2017). https://doi.org/10.1016/j.jsv.2017.06.021

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Institute of Engineering Research at Seoul National University and a grant from Kyung Hee University in 2020 (KHU-20201096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inhwa Jung or Yeon June Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that may have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S.S., Jung, I. & Kang, Y.J. Multiscale acoustical study on graphene oxide impregnated polyurethane foam. Macromol. Res. (2024). https://doi.org/10.1007/s13233-024-00281-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13233-024-00281-7

Keywords

Navigation