Log in

The effect melt processing temperature on the isothermal crystallization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The effect of melt processing temperature on the isothermal crystallization behavior of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)[P(3HB-co-4HB)] is studied using differential scanning calorimetry and polarizing microscopy. P(3HB-co-4HB) undergoes thermal degradation above its melting temperature. The degree of degradation increases with increase in the 4HB content in copolymer. The formation of low molecular weight P(3HB-co-4HB) from thermal degradation reduces the crystallization temperature. Thus, the isothermal crystallization rate and crystallinity decrease at a processing of 190 ℃ compared with 180 ℃ where less thermal degradation occurs. This is more evident in the case of P(3HB-co-4HB) of high 4HB content. The P(3HB-co-4HB) crystals formed in the isothermal crystallization process have different perfectness in the 4HB rich phase and the 3HB rich phase depending on the melt processing temperature. This results in the appearance of two distinct melting peaks with different melting temperatures and melting enthalpies. Our results indicated that thermal history in the isothermal crystallization process will affect these crystals differently.

Graphical abstract

A 10 °C difference in the processing temperature of P(3HB-co-4HB) results in a clear difference in the temperatures where crystallization is possible. Samples processed at 180 °C have a higher crystallizable temperature and crystallize more readily during the cooling stage compared with those process ed at 190 °C. As a result, the effect of thermal degradation on the crystallization behavior is minimized for the samples processed at 180 °C, while it is greater when thermal degradation retards crystallization and the crystallization temperature decreases for the samples processed at 190 °C

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.G.B. Derraik, The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44, 842 (2022)

    Article  Google Scholar 

  2. D. Janousek, A. Schirmer, H.G. Schlegel, Biodegradation polyhydroxyalkanoic acids. Appl. Microbiol. Biotechnol. 46, 451 (1996)

    Article  Google Scholar 

  3. K. Kasuya, T. Ohura, K. Masuda, Y. Doi, Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases. Int. J. Biol. Macromol. 24, 329 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Li, S.N. Yao, C.Y. Han, H.D. Cheng, Miscibility, crystallization and mechanical properties of poly[(3-hydroxybutyrate)-co-(4-hydroxyvalerate)]/poly(propylenecarbonate)/poly(vinyl acetate) ternary blends. Polym. Int. 70, 1544 (2021)

    Article  CAS  Google Scholar 

  5. J.F. Zhang, L. Wang, J. Sun, S.L. Jiang, H.F. Li, S. Zhang, W.T. Yang, X.Y. Gu, H. Qiao, A novel hollow microsphere acting on crystallization, mechanical, and thermal performance of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Cryst. 4, e10204 (2014)

    Google Scholar 

  6. H. Norhafini, K.H. Huong, A.A. Amirul, High PHA density fed-batch cultivation strategies for 4HB-rich P(3HB-co-4HB) copolymer production by transformant Cupriavidus malaysiensis USMAA1020. It. J. Biol. Macromol. 125, 1024 (2019)

    Article  CAS  Google Scholar 

  7. S. Chanprateep, K. Buasri, A. Muangwong, P. Utiswannakul, Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Degrad. Stab. 95, 2003 (2010)

    Article  CAS  Google Scholar 

  8. L.J. Han, C.Y. Han, W.L. Cao, X.M. Wang, J.J. Bian, L.S. Dong, Preparation and characterization of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/silica nanocomposites. Polym. Eng. Sci. 52, 250 (2012)

    Article  CAS  Google Scholar 

  9. S.G. Hong, H.W. Hsu, M.T. Ye, Thermal properties and applications of low molecular weight polyhydroxybutyrate. J. Therm. Anal. Calorim. 111, 1243 (2013)

    Article  CAS  Google Scholar 

  10. M.S.A. Aziz, G.R. Saad, H.F. Naguib, Non-isothermal crystallization kinetics of poly(3-hydroxybutyrate) in copo-ly(ester-urethane) nanocomposites based on poly(3-hydroxybutyrate) and cloisite 30B. Thermochim. Acta 605, 52 (2015)

    Article  Google Scholar 

  11. S.G. Hong, Y.C. Lin, C.H. Lin, Crystallization and degradation behaviors of treated polyhydroxybutyrates. React. Funct. Polym. 68, 1516 (2008)

    Article  CAS  Google Scholar 

  12. C. Xu, Z. Qiu, Crystallization behavior and thermal property of biodegradable poly(3-hydroxybutyrate)/multi-walled carbon nanotubes nanocomposite. Polym. Adv. Technol. 22, 538 (2011)

    Article  CAS  Google Scholar 

  13. O.Y. Yun, X. Min, Y. Li, Properties analysis of biodegradable material P(3HB-co-4HB). Open J. Adv. Mater. Res. 380, 168 (2011)

    Google Scholar 

  14. J.Q. Zhang, K. Kasuya, T. Hikima, M. Takata, A. Takemura, T. Iwata, Mechanical properties, structure analysis and enzymatic degradation of uniaxially cold-drawn films of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate]. Polym. Degrad. Stab. 96, 2130 (2011)

    Article  CAS  Google Scholar 

  15. X. Chen, X. Yang, J. Pan, L. Wang, K. Xu, Degradation behaviors of bioabsorbable P3/4HB monofilament suture in vitro and in vivo. J. Biomed. Mater. Res. Part B 92, 447 (2010)

    Article  Google Scholar 

  16. T.H. Ying, D. Ishii, A. Mahara, S. Murakami, K. Yamaoka, R. Sudesh, M. Samian, M. Fujita, T.I. Maeda, Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response. Biomaterials 29, 1307 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. K.H. Huong, C.H. Teh, A.A. Amirul, Microbial-based synthesis of highly elastomeric biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thermoplastic. Int. J. Biol. Macromol. 101, 983 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. D. Hu, A.L. Chung, L.P. Wu, X. Zhang, Q. Wu, J.C. Chen, G.Q. Chen, Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P3HB-b-P4HB. Biomacromol 12, 3166 (2011)

    Article  CAS  Google Scholar 

  19. A. Larrañaga, E. Lizundia, A review on the thermomechanical properties and biodegradation behaviour of polyesters. Eur. Polym. J. 121, 109296 (2019)

    Article  Google Scholar 

  20. M. Jo, Y. Jhang, E. Lee, S. Shin, H.J. Kang, Effect of 4-hydroxybutyrate content on physical properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polymer (Korea) 46, 661 (2022)

    Google Scholar 

  21. X.M. Che, H.M. Ye, G.Q. Chen, Effects of uracil on crystallization and rheological property of poly(R-3-hydroxybutyrate-co-4-hydroxybutyrate). Compos. Part A 109, 141 (2018)

    Article  CAS  Google Scholar 

  22. X.P. Wang, W.F. Li, H. Zhang, D.M. Jia, Effect of sodium benzoate on the crystallization behavior of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Appl. Mech. Mater. 665, 375 (2014)

    Article  Google Scholar 

  23. Y.C. Yu, Y. Li, C.Y. Han, L.G. **ao, Enhancement of the properties of biosourced poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by the incorporation of natural orotic acid. Int. J. Biol. Macromol. 136, 764 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. H. Ariffin, H. Nishida, Y. Shirai, M.A. Hassan, Highly selective transformation of poly[(R)-3-hydroxybutyric acid] into trans-crotonic acid by catalytic thermal degradation. Polym. Degrad. Stab. 95, 1375 (2010)

    Article  CAS  Google Scholar 

  25. H. Ariffin, H. Nishida, Y. Shirai, M.A. Hassan, Anhydride production as an additional mechanism of poly(3-hydroxybutyrate) pyrolysis. J. Appl. Polym. Sci. 111, 323 (2009)

    Article  CAS  Google Scholar 

  26. J.M. Clark, H.M. Pilath, A. Mittal, W.E. Michener, D.J. Robichaud, D.K. Johnson, Direct production of propene from the thermolysis of poly(β-hydroxybutyrate) (PHB). An experimental and DFT investigation. J. Phys. Chem. A 120, 332 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. R. Abate, A. Ballistreri, G. Montando, G. Impallomeni, Thermal degradation of microbial poly(4-hydroxybutyrate). Macromolecules 27, 332 (1994)

    Article  CAS  Google Scholar 

  28. K.J. Kim, Y. Doi, H. Abe, D.P. Martin, Thermal degradation behavior of poly(4-hydroxybutyric acid). Polym. Degrad. Stab. 183, 109460 (2021)

    Article  Google Scholar 

  29. R. Abate, A. Ballistreri, G. Montaudo, M. Giuffrida, G. Impallomeni, Separation and structural characterization of cyclic and open chain oligomers produced in the partial pyrolysis of microbial poly(hydroxybutyrates). Macromolecules 28, 7911 (1995)

    Article  CAS  Google Scholar 

  30. M. Kunioka, Y. Doi, Thermal degradation of microbial copolyesters poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 23, 1933 (1990)

    Article  CAS  Google Scholar 

  31. T. Omura, T. Goto, A. Maehara, S. Kimura, H. Abe, T. Iwata, Thermal degradation behavior of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate]. Polym. Degrad. Stab. 183, 109460 (2021)

    Article  CAS  Google Scholar 

  32. S. Nakamura, Y. Doi, M. Scandola, Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 25, 4237 (1992)

    Article  CAS  Google Scholar 

  33. M. Jo, T. Zhang, Y. Chang, E. Lee, S. Shin, H.J. Kang, Effect of thermal degradation on physical properties of poly[3-hydroxybutyrate-co-4-hydroxybutyrate]. Polymer (Korea) 46, 757 (2022)

    Article  CAS  Google Scholar 

  34. X. Wen, X. Lu, Q. Peng, F. Zhu, N. Zheng, Crystallization behaviors and morphology of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). J. Therm. Anal. Calorim. 109, 959 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by CJ Cheiljedang Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Jong Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Jang, Y., Jung, M. et al. The effect melt processing temperature on the isothermal crystallization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromol. Res. 32, 1–12 (2024). https://doi.org/10.1007/s13233-023-00205-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00205-x

Keywords

Navigation