Log in

Synthesis, characterization and structure–property study of new push–pull carbazole materials

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In the present work, we deal with some new organic materials having an extended conjugated electron system and providing tunable intramolecular charge transfer (ICT) properties. Firstly, the material structure, taken as a reference, is based on the N-ethylcarbazole motive as a central core having two bromo-distyrylbenzene units, denoted as M1, and has been synthesized and characterized principally using thermograviometric (ATG), absorption (OA), and emission spectroscopy (PL). Then, some derived compounds as symmetrical push–pull type materials with variations in their acceptor/anchor groups, containing four different kind of electron acceptor (A) groups and the ethylcarbazole as electron donor (D) part, denoted as CbzA1 → 4 were designed and elucidated. The impact of different electron-accepting strengths on the photophysical properties of carbazole derivatives is discussed. The correlation between structure properties of these materials has been well established. The withdrawing acceptor effect on their geometrical structure and optoelectronic properties was elucidated. In this framework, quantum calculations, based on density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, in both gas and solution phases, agree well with the experimental results. The lowest lying absorption and fluorescence spectra are the signatures of intramolecular charge transfer (ICT) character. Additionally, N-donor substitution was used to modulate the photophysical properties of these push–pull compounds and thus the organic based photovoltaic device’s performance.

Graphical abstract

Photophysical properties and charcteristic parameters of D-(π-A)2 organic compounds

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. S.R. Forrest, M.E. Thompson, Organic electronics and optoelectronics. Chem. Rev. 107, 923–1386 (2007). https://doi.org/10.1021/cr0501590

    Article  CAS  Google Scholar 

  2. R.D. Miller, E.A. Chandross, Materials for electronics. Chem. Rev. 110, 1–574 (2010). https://doi.org/10.1021/cr900384b

    Article  CAS  PubMed  Google Scholar 

  3. G.S. He, L.-S. Tan, Q. Zheng, P.N. Prasad, Chem. Rev. 108, 1245–1330 (2008). https://doi.org/10.1021/cr050054x

    Article  CAS  PubMed  Google Scholar 

  4. S. Ramkumar, S. Anandan, Synthesis of bianchored metal free organic dyes for dye sensitized solar cells. Dyes Pigm. 97, 397–404 (2013). https://doi.org/10.1016/j.dyepig.2013.01.014

    Article  CAS  Google Scholar 

  5. M.S. Kang, D.H. Kim. 2020. On the Publication of the Special Issue on Flexible Optoelectronic Materials and Devices. Macromol. Res. 28 653

  6. J.W. Ha, J.G. Jung, D.H. Ryu, S. Lee, C.E. Song, B. Lim, Y.J. Jung, J.M. Park, D.-H. Hwang, Thienoquinolinone-based acceptor-π-acceptor-type building block for polymer donors in organic solar cells. Macromol. Res. 31, 25–31 (2023). https://doi.org/10.1007/s13233-023-00112-1

    Article  CAS  Google Scholar 

  7. J. Gong, K. Sumathya, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sustain. Energy Rev. 68, 234–246 (2017). https://doi.org/10.1016/j.rser.2016.09.097

    Article  CAS  Google Scholar 

  8. C. Delesma, M. Robles, C. Amador-bedolla, J. Muñiz, The role of photoisomerization in the opto-electronic properties of organic photovoltaic materials: a DFT study. J. Photochem. Photobiol. 409, 113155 (2021)

    Article  CAS  Google Scholar 

  9. P. Ledwon, P. Zassowski, T. Jarosz, M. Lapkowski, P. Wagner, V. Cherpak, P. Stakhira, Novel donor-acceptor carbazole and benzothiadiazole material for deep red and infrared emitting applications. J. Mater. Chem. C 4, 2219–2227 (2016). https://doi.org/10.1039/C5TC04183J

    Article  CAS  Google Scholar 

  10. J. Kim, J. Park, D. Song, J. Jee, T. Gokulnath, S.C. Han, S.-H. **, J.W. Lee, BDT-based donor polymer for organic solar cells to achieve high efficiency over 15% for ternary organic solar cells. Macromol. Res. 31, 489–497 (2023). https://doi.org/10.1007/s13233-023-00117-w

    Article  CAS  Google Scholar 

  11. N. Blouin, M. Leclerc, Poly(2,7-carbazole)s: Structure−property relationships. Acc. Chem. Res. 41, 1110–1119 (2008). https://doi.org/10.1021/ar800057k

    Article  CAS  PubMed  Google Scholar 

  12. J. Li, A.C. Grimsdale, Carbazole-based polymers for organic photovoltaic devices. Chem. Soc. Rev. 39, 2399–2410 (2010). https://doi.org/10.1039/B915995A

    Article  CAS  PubMed  Google Scholar 

  13. H.-P. Shi, J.-X. Dai, L.-W. Shi, L. Xu, Z.-B. Zhou, Y. Zhang, W. Zhou, C. Dong, Synthesis, photophysical and electrochemical properties of a carbazole dimer-based derivative with benzothiazole units. Spectrochimica Acta Part A 93, 19–25 (2012). https://doi.org/10.1016/j.saa.2012.02.087

    Article  CAS  Google Scholar 

  14. W. Li, M. Otsuka, T. Kato, Y. Wang, T. Mori, T. Michinobu, 3,6-Carbazole vs 2,7-carbazole: a comparative study of hole-transporting polymeric materials for inorganic–organic hybrid perovskite solar cells. Beilstein J. Org. Chem. 12, 1401–1409 (2016). https://doi.org/10.3762/bjoc.12.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y.W. Lee, J. Yeop, J.Y. Kim, H.Y. Woo, Fullerene-based photoactive A-D-A triads for single-component organic solar cells: incorporation of non-fused planar conjugated core. Macromol. Res. 29, 871–881 (2021). https://doi.org/10.1007/s13233-021-9100-x

    Article  CAS  Google Scholar 

  16. P. Ledwon, Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications. Organ. Electron. 75, 105422 (2019). https://doi.org/10.1016/j.orgel.2019.105422

    Article  CAS  Google Scholar 

  17. S. Ramkumar, S. Manoharan, S. Anandan, Synthesis of D-(π-A)2 organic chromophores for dye-sensitized solar cells. Dyes Pigm. 94, 503–511 (2012). https://doi.org/10.1016/j.dyepig.2012.02.016

    Article  CAS  Google Scholar 

  18. H. Shi, Y. Cheng, W.-J. **g, J.-B. Cha, L. Fang, X.Q. Dong, C. Dong, Experimental and theoretical study of a new carbazole derivative having terminal benzimidazole rings. Spectrochimica Acta Part A 75, 525–532 (2010). https://doi.org/10.1016/j.saa.2009.11.003

    Article  CAS  Google Scholar 

  19. R.J. Durand, S. Gauthier, S. Achelle, S. Kahlal, J.-Y. Saillard, A. Barsella, L. Wojcik, N. Le Poul, F.R. Le Guen, Incorporation of a platinum center in the pi-conjugated core of push-pull chromophores for nonlinear optics (NLO). Dalton Trans. 46, 3059–3069 (2017). https://doi.org/10.1039/C7DT00252A

    Article  CAS  PubMed  Google Scholar 

  20. R.J. Durand, S. Gauthier, S. Achelle, T. Groizard, S. Kahlal, J.Y. Saillard, A. Barsella, N. Le Poul, F.R. Le Guen, Push–pull D–π-Ru–π-A chromophores: synthesis and electrochemical photophysical and second order nonlinear optical properties. Dalton Trans 47, 3965–3975 (2018). https://doi.org/10.1039/C8DT00093J

    Article  CAS  PubMed  Google Scholar 

  21. R. Kacimi, M. Raftani, T. Abram, A. Azai, H. Ziyat, L. Bejjit, M.N. Bennani, M. Bouachrine, Theoretical design of D-π-A system new dyes candidate for DSSC application. Heliyon 7, e07171 (2021). https://doi.org/10.1016/j.heliyon.2021.e07171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H.P. Shi, Y. Cheng, W.-J. **g, J.-B. Chao, L. Fang, X.Q. Dong, C. Dong, Experimental and theoretical study of a new carbazole derivative having terminal benzimidazole rings. Spectrochimica Acta Part A 75, 525–532 (2010). https://doi.org/10.1016/j.saa.2009.11.003

    Article  CAS  Google Scholar 

  23. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  24. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. J. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/physrev.140.a1133

    Article  Google Scholar 

  25. P. Hohenberg, W. Kohn, Inhomogeneous electron Gas. J. Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  26. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623 (1994). https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  27. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. J. Phys. Rev. A 38, 3098–3100 (1988). https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  28. A.D. Becke, A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993). https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  29. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  30. M. Bursch, J.-M. Mewes, A. Hansen, S. Grimme, Best-practice dft protocols for basic molecular computational chemistry. Angew. Chem. 61, e202205735 (2022). https://doi.org/10.1002/ange.202205735

    Article  CAS  Google Scholar 

  31. R. Ditchfield, W.J. Hehre, J.A. Pople, Self-consistent molecular-orbital methods IX An extended gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724 (1971). https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  32. G. Saranya, P. Kolandaivel, K. Senthilkumar, Optical absorption and emission properties of fluoranthene, benzo[k]fluoranthene, and their derivatives. A DFT study. J. Phys. Chem. A 115, 14647–14656 (2011). https://doi.org/10.1021/jp208617s

    Article  CAS  PubMed  Google Scholar 

  33. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., Gaussian 09 revision A 02 (Gaussian Inc., Wallingford CT, 2016)

    Google Scholar 

  34. R.E. Stratmann, G.E. Scuseria, M.J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 109, 8218 (1998). https://doi.org/10.1063/1.477483

    Article  CAS  Google Scholar 

  35. R. Bauernschmitt, R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454 (1996). https://doi.org/10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  36. F. Furche, R. Ahlrichs, Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 117, 7433–7447 (2002). https://doi.org/10.1063/1.1508368

    Article  CAS  Google Scholar 

  37. T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004). https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  38. M. Cossi, V. Barone, R. Cammi, J. Tomasi, Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 255, 327–335 (1996). https://doi.org/10.1016/0009-2614(96)00349-1

    Article  CAS  Google Scholar 

  39. J.B. Foreman, M.H. Gordon, J.A. Pople, M.J. Frisch, Toward a systematic molecular orbital theory for excited states. J. Phys. Chem. 96, 135–149 (1992). https://doi.org/10.1021/j100180a030

    Article  Google Scholar 

  40. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  41. K. Chaitanya, X.-H. Ju, B.M. Heron, Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv. 4, 26621–26634 (2014). https://doi.org/10.1039/c4ra02473g

    Article  CAS  Google Scholar 

  42. J. Wang, H. Li, N.-N. Ma, L.-K. Yan, Z.-M. Su, Theoretical studies on organoimido-substituted hexamolybdates dyes for dye-sensitized solar cells (DSSC). Dyes Pigm. 99, 440–446 (2013). https://doi.org/10.1016/j.dyepig.2013.05.027

    Article  CAS  Google Scholar 

  43. U. Mehmood, S.-U. Rahman, K. Harrabi, I.A. Hussein, B.V.S. Reddy, Recent advances in dye sensitized solar cells. Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/974782

    Article  Google Scholar 

  44. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49, 1691–1694 (1982). https://doi.org/10.1103/PhysRevLett.49.1691

    Article  CAS  Google Scholar 

  45. J.L. Gázquez, A hardness and softness theory of bond energies and chemical reactivity. Theor. Comput. Chem. 5, 135–152 (1998). https://doi.org/10.1016/S1380-7323(98)80007-1

    Article  Google Scholar 

  46. R.G. Parr, L.V. Szentpaly, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999). https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  47. M. Sun, Z. Cao, DFT and TD-DFT studies on osmacycle dyes with tunable photoelectronic properties for solar cells. Theor. Chem. Acc. 133, 1531 (2014). https://doi.org/10.1007/s00214-014-1531-4

    Article  CAS  Google Scholar 

  48. J.L. Gázquez, A. Cedillo, A. Vela, Electrodonating and electroaccepting powers. J. Phys. Chem. A 111, 1966–1970 (2007). https://doi.org/10.1021/jp065459f

    Article  CAS  PubMed  Google Scholar 

  49. C.-N. Chuang, H.-J. Chuang, Y.-X. Wang, S.-H. Chen, J.-J. Huang, M.-K. Leung, K.-H. Hsieh, Polymers with alkyl main chain pendent biphenyl carbazole or triphenylamine unit as host for polymer light emitting diodes. Polymer 53, 4983–4992 (2012). https://doi.org/10.1016/j.polymer.2012.08.042

    Article  CAS  Google Scholar 

  50. G.M. Upadhyay, H.R. Talele, S. Sahoo, A.V. Bedekar, Synthesis of carbazole derived aza[7]helicenes. Tetrahedron Lett. 55, 5394–5399 (2014). https://doi.org/10.1016/j.tetlet.2014.07.116

    Article  CAS  Google Scholar 

  51. X. Liu, Y. Sun, Y. Zhang, N. Zhao, H. Zhao, G. Wang, X. Yu, H. Liu, A series of carbazole cationic compounds with large two-photon absorption cross sections for imaging mitochondria in living cells with two-photon fluorescence microscopy. J. Fluoresc. 21, 497–506 (2011). https://doi.org/10.1007/s10895-010-0736-8

    Article  CAS  PubMed  Google Scholar 

  52. D.F. O’Brien, P.E. Burrows, S.R. Forrest, B.E. Koene, D.E. Loy, M.E. Thompson, Hole transporting materials with high glass transition temperatures for use in organic light-emitting devices. Adv. Mater. 10, 1108–1112 (1998). https://doi.org/10.1002/(SICI)1521-4095

    Article  Google Scholar 

  53. B.E. Koene, D.E. Loy, M.E. Thompson, Asymmetric triaryldiamines as thermally stable hole transporting layers for organic light-emitting devices. Chem. Mater. 10, 2235–2250 (1998). https://doi.org/10.1021/cm980186p

    Article  CAS  Google Scholar 

  54. M.J. **ong, Z.H. Li, M.S. Wong, Synthesis and functional properties of star-burst dendrimers that contain carbazole as peripheral edges and triazine as central core. Aust. J. Chem. 60, 603–607 (2007). https://doi.org/10.1071/CH07038

    Article  CAS  Google Scholar 

  55. P.J. Leenaers, A.J.L.A. Maufort, M.M. Wienk, R.A.J. Janssen, Impact of π-conjugated linkers on the effective exciton binding energy of diketopyrrolopyrrole-dithienopyrrole copolymers. J. Phys. Chem. C 124, 27403–27412 (2020). https://doi.org/10.1021/acs.jpcc.0c08768

    Article  CAS  Google Scholar 

  56. T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004). https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  57. T.D. Montiel, J.B. López, R.S. Rojo, D.G. Mitnik, Theoretical study of the effect of π-bridge on optical and electronic properties of carbazole-based sensitizers for DSSCs. Molecules 25, 3670 (2020). https://doi.org/10.3390/molecules25163670

    Article  CAS  Google Scholar 

  58. P. Pounraj, P. Ramasamy, M.S., Pandian, The influence of π-linkers configuration on properties of 10-hexylphenoxazine donor-based sensitizer for dye-sensitized solar cell application–theoretical approach. J Mol Graph Model 102, 107779 (2021). https://doi.org/10.1016/j.jmgm.2020.107779

    Article  CAS  PubMed  Google Scholar 

  59. S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, J. Roncali, Triphenylaminethienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. J. Am. Chem. Soc. 128, 3459–3466 (2006). https://doi.org/10.1021/ja058178e

    Article  CAS  PubMed  Google Scholar 

  60. Z. Fahim, S. Bouzzine, A. Youssef, M. Bouachrine, M. Hamidi, Ground state geometries, UV/vis absorption spectra and charge transfer properties of triphenylamine-thiophenes based dyes for DSSCs: A TD-DFT benchmark study. Comput. Theor. Chem. 1125, 39–48 (2018). https://doi.org/10.1016/j.comptc.2018.01.002

    Article  CAS  Google Scholar 

  61. H. Tian, X. Yang, R. Chen, R. Zhang, A. Hagfeldt, L. Sun, Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes. J. Phys. Chem. C 112, 11023–11033 (2008). https://doi.org/10.1021/jp800953s

    Article  CAS  Google Scholar 

  62. S. Mitroka, S. Zimmeck, D. Troya, J.M. Tanko, How solvent modulates hydroxyl radical reactivity in hydrogen atom abstractions. J. Am. Chem. Soc. 132, 2907–2913 (2010). https://doi.org/10.1021/ja903856t

    Article  CAS  PubMed  Google Scholar 

  63. J.-M. Ji, H. Zhou, H.K. Kim, Rational design criteria for D–π–A structured organic and porphyrin sensitizers for highly efficient dye-sensitized solar cells. J. Mater. Chem. A 6, 14518–14545 (2018). https://doi.org/10.1039/C8TA02281J

    Article  CAS  Google Scholar 

  64. H.-H.G. Tsai, C.-J. Tan, W.-H. Tseng, Electron transfer of squaring-derived dyes adsorbed on TiO2 clusters in dye sensitized solar cells: a density functional theory investigation. J. Phys. Chem. C 119, 4431–4443 (2015). https://doi.org/10.1021/jp508034f

    Article  CAS  Google Scholar 

  65. E. Steiner, Density-difference maps in quantum chemistry. Theoret. Chim. Acta 60, 561–572 (1982). https://doi.org/10.1007/BF00549611

    Article  CAS  Google Scholar 

  66. R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. 83, 8440–8441 (1986). https://doi.org/10.1073/pnas.83.22.8440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 107, 597–606 (2003). https://doi.org/10.1021/jp026963x

    Article  CAS  Google Scholar 

  68. Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu, H. Tian, Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J. Org. Chem. 73, 3791–3797 (2008). https://doi.org/10.1021/jo800159t

    Article  CAS  PubMed  Google Scholar 

  69. W. Sang-aroon, S. Saekow, V. Amornkitbamrung, Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 236, 35–40 (2012). https://doi.org/10.1016/j.jphotochem.2012.03.014

    Article  CAS  Google Scholar 

  70. J.-P. Lellouche, R.R. Koner, S. Ghosh, N-Substituted carbazole heterocycles and derivatives as multipurpose chemical species: at the interface of chemical engineering, polymer and materials science. Rev. Chem. Eng. 29, 413–443 (2013). https://doi.org/10.1515/revce-2013-0023

    Article  CAS  Google Scholar 

  71. K. Brunner, A.V. Dijken, H. Börner, J.J.A.M. Bastiaansen, N.N.M. Kiggen, B.M.W. Langeveld, Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes tuning the homo level without influencing the triplet energy in small molecules. J. Am. Chem. Soc. 126, 6035–6042 (2004). https://doi.org/10.1021/ja049883a

    Article  CAS  PubMed  Google Scholar 

  72. J.R. Reynolds, A.D. Child, J.P. Ruiz, S.Y. Hong, D.S. Marynick, Substituent effects on the electrical conductivity and electrochemical properties of conjugated furanylphenylene polymers. Macromolecules 26, 2095 (1993). https://doi.org/10.1021/ma00060a044

    Article  CAS  Google Scholar 

  73. M. Helgesen, S.A. Gevorgyan, C.K. Frederik, Substituted 2,1,3-benzothiadiazole- and thiophene-based polymers for solar cells−introducing a new thermocleavable precursor. Chem. Mater. 21, 4669 (2009). https://doi.org/10.1021/cm901937d

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

AM: conceptualisation, methodology, analysis, visualization, writing original draft and editing. AH and ML: methodology, investigation, analysis, editing and writing the original draft. KA: supervision, administrative and auxiliary assistance and MBB: analysis of data, and revising of this manuscript.

Corresponding author

Correspondence to A. Mabrouk.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hfaiedh, A., Labiedh, M., Mabrouk, A. et al. Synthesis, characterization and structure–property study of new push–pull carbazole materials. Macromol. Res. 31, 981–999 (2023). https://doi.org/10.1007/s13233-023-00182-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00182-1

Keywords

Navigation