Log in

Synthesis and characterization of aromatic poly(phosphonate)s, poly(thiophosphonate)s, and poly(selenophosphonate)s for high refractive index

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Highly refractive poly(phosphonate)s (BPOP), poly(thiophosphonate)s (BPTP), and poly(selenophosphonate)s (BPSP) with aromatic backbones were prepared by the polycondensation of phosphonic dichlorides and diols. The polymers have high thermal properties including high thermal properties (Td5% > 400 °C), glass transition temperature (Tg = 76 ~ 157 °C), and high optical properties such as transparency at 400 nm of over 80% for films of ca. 10 μm thickness, and a refractive index in the range of 1.633–1.675. In particular, BPSP exhibited a high refractive index (1.675) with low birefringence (0.0025) due to the heavy atom effect of selenium.

Graphical abstract

This paper represent synthesis and characterization of highly refractive and transparent poly(phosphonate)s (BPOP), poly(thiophosphonate)s (BPTP), and poly(selenophosphonate)s (BPSP) with aromatic backbones in the polymer chains. The poly(phosphonate)s was prepared by the polycondensation of phosphonic dichlorides and diols. The polymers exhibited high thermal properties such as glass transition temperature (> 76 °C), and 5% weight loss temperature at > 393 °C under nitrogen. The polymers also showed good optical properties, including high optical transparency in the visible region, a low birefringence of 0.0099–0.0026, and high refractive indices of 1.6333–1.6757 at 637 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19(47), 8907–8919 (2009)

    CAS  Google Scholar 

  2. M. Choi, Y. Kim, C. Ha, Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci. 33, 581–630 (2008)

    CAS  Google Scholar 

  3. T.W. Kelly, P.F. Baude, C. Gerlach, D.E. Ender, D. Muryes, M.A. Haase, D.E. Vogel, S.D. Theiss, Recent progress in organic electronics: Materials, devices, and processes. Chem. Mater. 16(23), 4413–4422 (2004)

    Google Scholar 

  4. G.S. Jha, G. Seshadri, A. Mohan, R.K. Khandal, Development of high refractive index plastics. e-Polymers 120, 1–25 (2007)

    Google Scholar 

  5. R.R. Grote, L.C. Bassett, Single-mode optical waveguides on native high-refractive-index substrates. APL Photonics 1(7), 071302 (2016)

    Google Scholar 

  6. T.C. Gao, S.Y. Yao, X.L. Huo, Optical performance simulation and optimization for CMOS image sensor pixels. Optik 124(23), 6330–6332 (2013)

    CAS  Google Scholar 

  7. E. Kim, H. Cho, K. Kim, T.W. Koh, J. Chung, J. Lee, S. Yoo, A Facile Route to Efficient, Low-Cost Flexible Organic Light-Emitting Diodes: Utilizing the High Refractive Index and Built-In Scattering Properties of Industrial-Grade PEN Substrates. Adv. Mater. 27(9), 1624–1631 (2015)

    CAS  PubMed  Google Scholar 

  8. Y. Guan, W. Dong, C. Wang, D. Shang, Highly refractive polyimides containing pyridine and sulfur units: synthesis and thermal, mechanical, solubility and optical properties. Polym. Int. 66(7), 1044–1054 (2017)

    CAS  Google Scholar 

  9. M.A. Olshavsky, H.R. Allock, Polyphosphazenes with high refractive indices: Synthesis, characterization, and optical properties. Macromolecules 28(18), 6188–6197 (1995)

    CAS  Google Scholar 

  10. H. Kim, B.C. Ku, M. Goh, H. Yeo, H.C. Ko, Y.H. You, Synthesis and characterization of phosphorus-and sulfur-containing aromatic polyimides for high refractive index. Polymer 136, 143–148 (2018)

    CAS  Google Scholar 

  11. D.H. Kim, W. Jang, K. Choi, J.S. Choi, J. Pyun, J. Lim, S.G. Im, One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers. Sci. Adv. 6(28), eabb5320 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Javadi, Z. Najjar, S. Bahadori, V. Vatanpour, A. Malek, E. Abouzari-Lotfde, A. Shockravi, High refractive index and low-birefringence polyamides containing thiazole and naphthalene units. RSC Adv. 5(111), 91670–91682 (2015)

    CAS  Google Scholar 

  13. T. Yunhui, S. Cabrini, J. Nie, C. Pina-Hernandez, High-refractive index acrylate polymers for applications in nanoimprint lithography. Chin. Chem. Lett. 31(1), 256–260 (2020)

    Google Scholar 

  14. X. Zhao, S. Li, X. Liu, X. Yang, Y. Zhang, R. Yu, X. Zuo, W. Huang, Synthesis and characterization of thianthrene-based epoxy with high refractive index over 1.7. Phosphorus Sulfur and Silicon Related Elements 193(1), 33–40 (2018)

    CAS  Google Scholar 

  15. A. Harumichi, K. Yoshinobu, Sulfur-containing epoxy compound and sulfur-containing epoxy resin. JP10130250, Japan (1998).

  16. N.H. You, T. Higashihara, S. Yasuo, S. Ando, M. Ueda, Synthesis of sulfur-containing poly (thioester) s with high refractive indices and high Abbe numbers. Polym. Chem. 1(4), 480–484 (2010)

    CAS  Google Scholar 

  17. C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)

    Google Scholar 

  18. L. Chen, Y.Z. Wang, Aryl polyphosphonates: useful halogen-free flame retardants for polymers. Materials 3(10), 4746–4760 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. I.C. Cetinkaya, G. Yuksel, C. Macit, M.E. Ureyen, T. Eren, Synthesis and Characterization of Polyphosphonates and Polyurethanes Using Chalcone and DOPO-Chalcone as a Flame Retardant. ACS Appl. Polym. Mater. 3(10), 5277–5290 (2021)

    CAS  Google Scholar 

  20. H. Ding, Z. Luo, B. Wang, A phosphorus/sulfur-containing compound toward simultaneously endowing epoxy resin with good flame retardancy and high transparency. J. Appl. Polym. Sci. 139(26), e52431 (2022)

    CAS  Google Scholar 

  21. J. Walkowiak-Kulikowska, J. Wolska, H. Koroniak, Polymers application in proton exchange membranes for fuel cells (PEMFCs). Phys. Sci. Rev. 2(8), 1–34 (2017)

    Google Scholar 

  22. J. Miyake, T. Watanabe, H. Shintani, Y. Sugawara, M. Uchida, K. Miyatake, Reinforced polyphenylene ionomer membranes exhibiting high fuel cell performance and mechanical durability. ACS Mater. Au 1(1), 81–88 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. H.K. Shobha, H. Johnson, M. Sankarapandian, Y.S. Kim, P. Rangarajan, D.G. Baird, J.E. McGrath, Synthesis of high refractive-index melt-stable aromatic polyphosphonates. J. Polym. Sci. Part A 39(17), 2904–2910 (2001)

    CAS  Google Scholar 

  24. M. Olshavsky, H.R. Allcock, Polyphosphazenes with High Refractive Indices: Optical Dispersion and Molar Refractivity. Macromolecules 30, 4179–4183 (1997)

    CAS  Google Scholar 

  25. L. Fang, J. Sun, X. Chen, Y. Tao, J. Zhou, C. Wang, Q. Fang, Phosphorus- and sulfur-containing high-refractive-index polymers with high Tg and transparency derived from a bio-based aldehyde. Macromolecules 53, 125–131 (2020)

    CAS  Google Scholar 

  26. Y. Su, E. B. Filho, N. Peek, B. Chen. A. E. Stiegman, High Refractive Index Polymers (n> 1.7), Based on Thiol–Ene Cross-Linking of Polarizable P═ S and P═ Se Organic/Inorganic Monomers. Macromolecules 52. 22 (2019) 9012–22.

  27. H. Kim, B.C. Ku, M. Goh, H.C. Ko, S. Ando, N.H. You, Synergistic effect of sulfur and chalcogen atoms on the enhanced refractive indices of polyimides in the visible and near-infrared regions. Macromolecules 52(3), 827–834 (2019)

    CAS  Google Scholar 

  28. Y. Tokushita, S. Furuya, K. Nakabayashi, S. Samitsu, H. Mori, Preparation of highly transparent poly (meth) acrylates with enhanced refractive indices by radical (co) polymerization of seleno (meth) acrylates. Polymer 237, 124346 (2021)

    CAS  Google Scholar 

  29. K.H. Nam, A. Lee, S.K. Lee, K. Hur, H. Han, Infrared transmitting polyimides based on chalcogenide element-blocks with tunable high-refractive indices and broad optical windows. J. Mater. Chem. C 7(34), 10574–10580 (2019)

    CAS  Google Scholar 

  30. E.K. Macdonald, J.C. Lacey, I. Ogura, M.P. Shaver, Aromatic polyphosphonates as high refractive index polymers. Eur. Polymer J. 87, 14–23 (2017)

    CAS  Google Scholar 

  31. R. Hifumil, I. Tomita, Synthesis and high refractive index properties of poly (thiophosphonate)s. Polym. J. 50(6), 467–471 (2018)

    Google Scholar 

  32. B. Huras, J. Zakrzewski, M. Krawczyk, Reactions of Nitroxides, Part XI: O-Aryl Phenylselenophosphonates Bearing a Nitroxyl Moiety. Heteroat. Chem. 22(2), 137–147 (2011)

    CAS  Google Scholar 

  33. L. Dominguinil, K. Martinello, M. Peterson, H.G. Riella, M.A. Fiori, Synthesis of polyphosphate polymer employing the bisphenol (BHBF) and the dichloride of phenylphosphonic (PPDC): evaluation of the thermal characteristics. Curr. Trends Anal. Bioanal. Chem. 3(1), 114–124 (2019)

    Google Scholar 

  34. J.J. Intermann, K. Yao, H.L. Yip, Y.X. Xu, Y.X. Li, P.W. Liang, A.K.Y. Jen, Molecular weight effect on the absorption, charge carrier mobility, and photovoltaic performance of an indacenodiselenophene-based ladder-type polymer. Chem. Mater. 25(15), 3188–3195 (2013)

    Google Scholar 

  35. S.P. Mishra, A.E. Javier, R. Zhang, J. Liu, J.A. Belot, I. Osaka, R.D. Mccullough, Mixed selenium-sulfur fused ring systems as building blocks for novel polymers used in field effect transistors. J. Mater. Chem. 21(5), 1551–1561 (2011)

    CAS  Google Scholar 

  36. A.A. Alghamdi, D.C. Watters, H. Yi, S. Al-Faifi, M.S. Almeataq, D. Coles, A. Iraqi, Selenophene vs. thiophene in benzothiadiazole-based low energy gap donor–acceptor polymers for photovoltaic applications. J. Mater. Chem. A 1(16), 5165–5171 (2013)

    CAS  Google Scholar 

  37. Q. Li, S. Liu, M. Xu, X. Pan, N. Li, J. Zhu, X. Zhu, Selenide-containing soluble polyimides: High refractive index and redox responsivebess. Eur. Polym. J. 122, 109358 (2020)

    CAS  Google Scholar 

  38. S.R. Alvarado, I.A. Shortt, H.J. Fan, J. Vela, Assessing Phosphine−Chalcogen Bond Energetics from Calculations. Organometallics 34, 4023–4031 (2015)

    CAS  Google Scholar 

  39. I.V. Sterkhova, V.I. Smirnov, S.F. Malysheva, V.A. Kuimov, N.A. Belogorlova, Molecular and crystal structures of tris(3-methylphenyl)phosphine and its chalcogenides. J. Mol. Struct. 1197, 681–690 (2019)

    CAS  Google Scholar 

  40. T.R. Tostch, V.L. Stanford, O. Klep, M.K. Burdette, B. Grant, S.H. Foulger, G.M. Gray, Synthesis and characterization of modular polyphosphonate homopolymers and copolymers. J. Polym. Sci. 58(13), 1825–1842 (2020)

    Google Scholar 

  41. H. Jiang, X. Pan, N. Li, Z. Zhang, J. Zhu, X. Zhu, Selenide-containing high refractive index polymer material with adjustable refractive index and Abbe’s number. React. Funct. Polym. 111, 1–6 (2017)

    CAS  Google Scholar 

  42. R. Larrain, L.H. Tagle, F.R. Diaz, Glass Transition Temperature-molecular Weight Relation for Poly(hexamethylene perchloroterephthalamide). Polym. Bull. 4, 487–490 (1981)

    CAS  Google Scholar 

  43. R. Sayre, The extension of bond and molar refraction concepts to liquid organic phosphorus compounds. J. Am. Chem. Soc. 80(20), 5438–5440 (1958)

    CAS  Google Scholar 

  44. Q. Li, S. Liu, M. Xu, X. Pan, N. Li, J. Zhu, X. Zhu, Selenide-containing soluble polyimides: high refractive index and redox responsiveness. Eur. Polymer J. 122, 109358 (2020)

    CAS  Google Scholar 

  45. Y. Tokushita, S. Furuya, S. Nobe, K. Nakabayashi, S. Samitsu, H. Mori, Preparation of highly transparent poly (meth) acrylates with enhanced refractive indices by radical (co) polymerization of seleno (meth) acrylates. Polymer 237, 124346 (2021)

    CAS  Google Scholar 

  46. N.H. You, N. Fukuzaki, Y. Suzuki, Y. Nakamura, T. Higashihara, S. Ando, M. Ueda, Synthesis of high-refractive index polyimide containing selenophene unit. J. Polym. Sci. Part A Pol. Chem. 47(17), 4428–4434 (2009)

    CAS  Google Scholar 

  47. C. Luo, J. Zuo, F. Wang, Y. Yuan, F. Lin, H. Huang, J. Zhao, High refractive index and flame retardancy of epoxy thermoset cured by tris (2- mercaptoethyl) phosphate. Polym. Degrad. Stab. 129, 7–11 (2016)

    CAS  Google Scholar 

  48. Y. Jia, J. Li, Y. Wang, J. **, H. Liu, Preparation and properties of optical acrylate modified with sulfur-containing cyclophosphazene polymer. Prog. Org. Coat. 156, 106249 (2021)

    CAS  Google Scholar 

  49. K. Anjana, Othayoth, Billakanti Srinivas, Karuppiah Murugan, Krishnamurthi Muralidharan, Poly(methyl methacrylate)/polyphosphate blends with tunable refractive indices for optical applications. Opt. Mater. 104, 109841 (2020)

    Google Scholar 

  50. H.J. Yen, G.S. Liou, A facile approach towards optically isotropic, colorless, and thermoplastic polyimidothioethers with high refractive index. J. Mater. Chem. 20(20), 4080–4084 (2020)

    Google Scholar 

  51. A. Javadi, Z. Najjar, S. Bahadori, V. Vantanpour, A. Malek, E. Abouzari-Lotf, A. Shockravi, High refractive index and low-birefringence polyamides containing thiazole and naphthalene units. RSC Adv. 5(111), 91670–91682 (2015)

    CAS  Google Scholar 

  52. Y. Tojo, Y. Arakwa, J. Watanabe, G.I. Konishi, Synthesis of high refractive index and low-birefringence acrylate polymers with a tetraphenylethane skeleton in the side chain. Polym. Chem. 4(13), 3807–3812 (2013)

    CAS  Google Scholar 

  53. R. Hifumi, I. Tomita, Low birefringent properties of poly (phosphonate) derivatives. Macromolecules 51(15), 5594–5599 (2018)

    CAS  Google Scholar 

  54. X. Li, M. Wang, N. Mushtaq, G. Chen, G. Li, X. Fang, A. Zhang, Colorless polyimide films with low birefringence and retardation: Synthesis and characterization. Polymer 265, 125579 (2022)

    Google Scholar 

Download references

Acknowledgements

The work was partly supported by a grant from the Korea Institute of Science and Technology Institutional (KIST) Program and was also supported by the Korea Evaluation Institute of Industrial Technology (KEIT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No.20011577 & No. 20011153).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honglae Sohn or Nam-Ho You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 401 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, D., Lee, M., Sohn, H. et al. Synthesis and characterization of aromatic poly(phosphonate)s, poly(thiophosphonate)s, and poly(selenophosphonate)s for high refractive index. Macromol. Res. 31, 583–592 (2023). https://doi.org/10.1007/s13233-023-00140-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00140-x

Keywords

Navigation