Log in

CO2/Propylene Oxide Copolymerization with a Bifunctional Catalytic System Composed of Multiple Ammonium Salts and a Salen Cobalt Complex Containing Sulfonate Anions

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A (Salen)Co(III) complex tethering four quaternary ammonium salts with covalent bonds is one of the most highly active catalysts for CO2/epoxide copolymerization. In this work, we aimed to prepare similar (Salen)Co(III) complexes to which quaternary ammonium salts are linked via ionic interactions. Thus, multiple ammonium salts containing 2–5 quaternary ammonium salt units and (Salen)Co(III) complexes containing one or two -SO3[PhNH3]+ moieties were prepared. A binary catalytic system composed of the prepared multiple ammonium salts and the prepared (Salen)Co(III) complex containing -SO3[(nBu)4N]+ moieties showed high activity (TOF, 1500-4500 h−1) for CO2/propylene oxide (PO) copolymerization, whereas a combination of the multiple ammonium salts and the conventional (Salen)Co(III) complex not containing -SO3[(nBu)4N]+ moieties was inactive under the identical polymerization conditions of [PO]/[Co] = 20000. However, a substantial amount of cyclic carbonate was concomitantly generated, especially when a (Salen)Co(III) complex containing two -SO3[(nBu)4N]+ moieties was used (25–30%). This side-reaction could be mitigated by ca. 50% by employing a (Salen)Co(III) complex containing one -SO3[(nBu)4N]+ moiety. Cyclic carbonate generation can reasonably be ascribed to ammonium salts ([(nBu)4N]+[carbonate]) not linked to the (Salen)Co(III) complex formed in the binary catalytic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Lamparelli, and C. Capacchione, Catalysts, 11, (2021).

  2. Y. Y. Zhang, G. P. Wu, and D. J. Darensbourg, Trends Chem., 2, 750 (2020).

    Article  CAS  Google Scholar 

  3. D. J. Darensbourg, Green Chem., 21, 2214 (2019).

    Article  CAS  Google Scholar 

  4. C. M. Kozak, K. Ambrose, and T. S. Anderson, Coord. Chem. Rev., 376, 565 (2018).

    Article  CAS  Google Scholar 

  5. L. Guo, K. J. Lamb, and M. North, Green Chem., 23, 77 (2021).

    Article  CAS  Google Scholar 

  6. Y. Kim, K. Hyun, D. Ahn, R. Kim, M. H. Park, and Y. Kim, ChemSusChem., 12, 4211 (2019).

    Article  PubMed  CAS  Google Scholar 

  7. M. Hong, Y. Kim, H. Kim, H. J. Cho, M. H. Baik, and Y. Kim, J. Org. Chem., 83, 9370 (2018).

    Article  PubMed  CAS  Google Scholar 

  8. M. H. Kim, T. Song, U. R. Seo, J. E. Park, K. Cho, S. M. Lee, H. J. Kim, Y. J. Ko, Y. K. Chung, and S. U. Son, J. Mater. Chem. A, 5, 23612 (2017).

    Article  CAS  Google Scholar 

  9. S. Inoue, H. Koinuma, and T. Tsuruta, J. Polym. Sci. B Polym. Phys., 7, 287 (1969).

    Article  CAS  Google Scholar 

  10. J. Marbach, T. Höfer, N. Bornholdt, and G. A. Luinstra, ChemistryOpen, 8, 828 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. S. Padmanaban, M. Kim, and S. Yoon, J. Ind. Eng. Chem., 71, 336 (2019).

    Article  CAS  Google Scholar 

  12. P. Sudakar, D. Sivanesan, and S. Yoon, Macromol. Rapid Commun., 37, 788 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. S. Padmanaban, and S. Yoon, Catalysts, 9, 892 (2019).

    Article  CAS  Google Scholar 

  14. M. Ree, Y. Hwang, J. S. Kim, H. Kim, G. Kim, and H. Kim, Catal. Today, 115, 134 (2006).

    Article  CAS  Google Scholar 

  15. S. F. Stahl, and G. A. Luinstra, Catalysts, 10, 1 (2020).

    Article  Google Scholar 

  16. J. K. Varghese, D. S. Park, J. Y. Jeon, and B. Y. Lee, J. Polym. Sci. A Polym. Chem., 51, 4811 (2013).

    Article  CAS  Google Scholar 

  17. C. H. Tran, S. A. Kim, Y. Moon, Y. Lee, H. M. Ryu, J. H. Baik, S. C. Hong, and I. Kim, Catal. Today, 375, 335 (2021).

    Article  CAS  Google Scholar 

  18. Y. J. Huang, G. R. Qi, and Y. H. Wang, J. Polym. Sci. A Polym. Chem., 40, 1142 (2002).

    Article  CAS  Google Scholar 

  19. G. W. Coates, and D. R. Moore, Angew. Chem. Int. Ed., 43, 6618 (2004).

    Article  CAS  Google Scholar 

  20. X. B. Lu, W. M. Ren, and G. P. Wu, Acc. Chem. Res., 45, 1721 (2012).

    Article  PubMed  CAS  Google Scholar 

  21. D. J. Darensbourg, and S. J. Wilson, Green Chem., 14, 2665 (2012).

    Article  CAS  Google Scholar 

  22. M. R. Kember, A. Buchard, and C. K. Williams, Che. Commun., 47, 141 (2011).

    Article  CAS  Google Scholar 

  23. E. K. Noh, S. J. Na, S. S., S. W. Kim, and B. Y. Lee, J. Am. Chem. Soc., 129, 8082 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. S. S., J. K. Min, J. E. Seong, S. J. Na, and B. Y. Lee, Angew. Chem. Int. Ed., 47, 7306 (2008).

    Article  Google Scholar 

  25. S. J. Na, S. Sujith, A. Cyriac, B. E. Kim, J. Yoo, Y. K. Kang, S. J. Han, C. Lee, and B. Y. Lee, Inorg. Chem., 48, 10455 (2009).

    Article  PubMed  CAS  Google Scholar 

  26. K. Dyduch, M. Srebro-Hooper, B. Y. Lee, and A. Michalak, J. Comput. Chem., 39, 1854 (2018).

    Article  PubMed  CAS  Google Scholar 

  27. H. J. Lee, J. W. Baek, Y.H. Seo, H. C. Lee, S. M. Jeong, J. Lee, C. G. Lee, and B. Y. Lee, Molecules, 26, 2827 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. J. Y. Jeon, J. K. Varghese, J. H. Park, S. H. Lee, and B. Y. Lee, Eur. J. Org. Chem., 2021, 3566 (2012).

    Article  Google Scholar 

  29. J. Min, J. E. Seong, S. J. Na, A. Cyriac, and B. Y. Lee, Bull. Korean Chem. Soc., 30, 745 (2009).

    Article  CAS  Google Scholar 

  30. A. Cyriac, S. H. Lee, J. K. Varghese, E. S. Park, J. H. Park, and B. Y. Lee, Macromolecules, 43, 7398 (2010).

    Article  CAS  Google Scholar 

  31. A. J. Plajer and C. K. Williams, Angew. Chem. Int. Ed., 60, 13372 (2021).

    Article  CAS  Google Scholar 

  32. A. C. Deacy, E. Moreby, A. Phanopoulos, and C. K. Williams, J. Am. Chem. Soc., 142, 19150 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. J. Deng, M. Ratanasak, Y. Sako, H. Tokuda, C. Maeda, J. Y. Hasegawa, K. Nozaki, and T. Ema, Chem. Sci., 11, 5669 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. H. Asaba, T. Iwasaki, M. Hatazawa, J. Deng, H. Nagae, K. Mashima, and K. Nozaki, Inorg. Chem., 59, 7928 (2020).

    Article  PubMed  CAS  Google Scholar 

  35. G. W. Yang, Y. Y. Zhang, R. **e, and G. P. Wu, J. Am. Chem. Soc., 142, 12245 (2020).

    Article  PubMed  CAS  Google Scholar 

  36. G. W. Yang, C. K. Xu, R. **e, Y. Y. Zhang, X. F. Zhu, and G. P. Wu, J. Am. Chem. Soc., 143, 3455 (2021).

    Article  PubMed  CAS  Google Scholar 

  37. C. J. Zhang, S. Q. Wu, S. Boopathi, X. H. Zhang, X. Hong, Y. Gnanou, and X. S. Feng, ACS Sustain. Chem. Eng., 8, 13056 (2020).

    Article  CAS  Google Scholar 

  38. M. A. Mikhailov, K. A. Brylev, A. V. Virovets, M. R. Gallyamov, I. Novozhilov, and M. N. Sokolov, New J. Chem., 40, 1162 (2016).

    Article  CAS  Google Scholar 

  39. A. Cyriac, J. Y. Jeon, J. K. Varghese, J. H. Park, S. Y. Choi, Y. K. Chung, and B. Y. Lee, Dalton Trans., 41, 1444 (2012).

    Article  PubMed  CAS  Google Scholar 

  40. E. B. Hager, B. C. E. Makhubela, and G. S. Smith, Dalton Trans., 41, 13927 (2012).

    Article  PubMed  CAS  Google Scholar 

  41. M. Holbach, X. Zheng, C. Burd, C. W. Jones, and M. Weck, J. Org. Chem., 71, 2903 (2006).

    Article  PubMed  CAS  Google Scholar 

  42. X. B. Lu, L. Shi, Y. M. Wang, R. Zhang, Y. J. Zhang, X. J. Peng, Z. C. Zhang, and B. Li, J. Am. Chem. Soc., 128, 1664 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. J. Yoo, S. J. Na, H. C. Park, A. Cyriac, and B. Y. Lee, Dalton Trans., 39, 2622 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. A. Roznowska, K. Dyduch, B. Y. Lee, and A. Michalak, J. Mol. Model., 26, 113 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Carbon to X Program of the Ministry of Science and ICT (grant number 2020M3H7A1098281) and by the Priority Research Centers Program (2019R1A6A1A11051471) through the National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bun Yeoul Lee.

Additional information

The image from this article is used as the cover image of the Volume 29, Issue 12.

Supporting information

Information is available regarding 1H NMR and 13C NMR spectra of new compounds via the Internet at http://www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Y.H., Hyun, Y.B., Lee, H.J. et al. CO2/Propylene Oxide Copolymerization with a Bifunctional Catalytic System Composed of Multiple Ammonium Salts and a Salen Cobalt Complex Containing Sulfonate Anions. Macromol. Res. 29, 855–863 (2021). https://doi.org/10.1007/s13233-021-9094-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9094-4

Keywords

Navigation