Log in

Effects of Nucleating Agent on the Thermal Conductivity and Creep Strain Behavior of Rigid Polyurethane Foams Blown by an Environment-Friendly Foaming Agent

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The effects of liquid-type additive, methoxynonafluorobutane, on the morphology, thermal conductivity, creep strain, and mechanical strength of polyurethane (PU) foams with an environment-friendly foaming agent, hyrdofluoroolefin, were investigated. The methoxynonafluorobutane under the trade name of NOVEC likely acted as a nucleating agent during the formation of PU foams. When NOVEC was added in the amount of 3 parts per hundred polyol by weight (php), the cell size of the foam was minimal, and the cell size distribution was relatively uniform. At the NOVEC content of 3.0 php, the thermal conductivity of the PU foams was also minimal. This decrease in thermal conductivity was due to the smaller cell size of the foams lowering their thermal conductivity. At 3.0 php NOVEC content, the creep strain of the PU foams was minimal being 0.29% at 1,000 h. At 3.0 php NOVEC, the estimated creep strain of the PU foam exhibited the lowest creep strain of 3.47% at 50 years. As a result, at 3.0 php NOVEC content, the cell wall was relatively less fractured, resulting in a small deformation of the PU foam. These results suggest that the main factors in improving the thermal insulation properties and stability of the PU foams are smaller cell size and narrow cell size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Chung, H. Y. Kim, J. H. Yu, and B. C. Chun, Macromol. Res., 23, 350 (2015).

    Article  CAS  Google Scholar 

  2. Y. Lee, M. G. Jang, K. H. Choi, C. Han, and W. N. Kim, J. Appl. Polym. Sci., 133, 43557 (2016).

    Google Scholar 

  3. S. H. Kim, H. C. Park, H. M. Jeong, and B. K. Kim, J. Mater. Sci., 45, 2675 (2010).

    Article  CAS  Google Scholar 

  4. J. M. Kim, D. H. Kim, J. Kim, J. W. Lee, and W. N. Kim, Macromol. Res., 25, 190 (2017).

    Article  CAS  Google Scholar 

  5. H. Im, S. C. Roh, and C. K. Kim, Macromol. Res., 21, 614 (2013).

    Article  CAS  Google Scholar 

  6. H. Kim, J. Park, K. S. Minn, J. R. Youn, and Y. S. Song, Macromol. Res., 28, 165 (2020).

    Article  CAS  Google Scholar 

  7. M. B. Kale, Z. Luo, X. Zhang, D. Dhamodharan, N. Divakaran, S. Mubarak, L. Wu, and Y. Xu, Polymer, 170, 43 (2019).

    Article  CAS  Google Scholar 

  8. A. Al Nabulsi, D. Cozzula, T. Hagen, W. Leitner, and T. E. Müller, Polym. Chem., 9, 4891 (2018).

    Article  CAS  Google Scholar 

  9. P. Kjeldsen and M. H. Jensen, Environ. Sci. Technol., 35, 3055 (2001).

    Article  CAS  Google Scholar 

  10. R. S. Grossman, SAE Inter. J. Mater. Manufact., 9, 794 (2016).

    Article  Google Scholar 

  11. G. Harikrishnan, S. N. Singh, E. Kiesel, and C. W. Macosko, Polymer, 51, 3349 (2010).

    Article  CAS  Google Scholar 

  12. A. A. Septevani, D. A. C. Evans, P. K. Annamalai, and D. J. Martin, Ind. Crop. Prod., 107, 114 (2017).

    Article  CAS  Google Scholar 

  13. M. Stanzione, M. Oliviero, M. Cocca, M. E. Errico, G. Gentile, M. Avella, M. Lavorgna, G. G. Buonocore, and L. Verdolotti, Carbohydr. Polym., 231, 115772 (2020).

    Article  CAS  Google Scholar 

  14. M. J. Kang, Y. H. Kim, G. P. Park, M. S. Han, W. N. Kim, and S. D. Park, J. Mater. Sci., 45, 5412 (2010).

    Article  CAS  Google Scholar 

  15. J. W. Kang, J. M. Kim, M. S. Kim, Y. H. Kim, W. N. Kim, W. Jang, and D. S. Shin, Macromol. Res., 17, 856 (2009).

    Article  CAS  Google Scholar 

  16. K. Seguin, A. J. Dallas, and G. Weineck, Proc. SPIE, 6922, 692230 (2008).

    Article  Google Scholar 

  17. M. Garrido, J. R. Correia, F. A. Branco, and T. Keller, J. Compos. Mater., 48, 2237 (2014).

    Article  Google Scholar 

  18. M. Adachi, H. Kosaka, T. Fukuda, S. Ohashi, and K. Harumi, J. Mater. Sci. Technol., 19, 470 (2014).

    Google Scholar 

  19. D. W. Van Krevelen and K. Te Nijenhuis, in Properties of Polymers, 4th ed., Elsevier, Amsterdam, 2009, pp 229–244.

    Book  Google Scholar 

  20. S. Siengchin, Mech. Compos. Mater., 45, 415 (2009).

    Article  CAS  Google Scholar 

  21. J. S. Huang and L. J. Gibson, J. Mater. Sci., 26, 637 (1991).

    Article  CAS  Google Scholar 

  22. X. D. Zhang, C. W. Macosko, H. T. Davis, A. D. Nikolov, and D. T. Wasan, J. Colloid Interface Sci., 215, 270 (1999).

    Article  CAS  Google Scholar 

  23. S. A. Baser and D. V. Khakhar, Polym. Eng. Sci., 34, 642 (1994).

    Article  CAS  Google Scholar 

  24. W. J. Seo, H. C. Jung, J. C. Hyun, W. N. Kim, Y. B. Lee, K. H. Choe, and S. B. Kim, J. Appl. Polym. Sci., 90, 12 (2003).

    Article  CAS  Google Scholar 

  25. A. Sabbahi and J. M. Vergnaud, Eur. Polym. J., 29, 1243 (1993).

    Article  CAS  Google Scholar 

  26. M. A. Schuetz and L. R. Glicksman, J. Cellu. Plast., 20, 114 (1984).

    Article  CAS  Google Scholar 

  27. F. Moles, J. Navarro-Esbri, B. Peris, A. Mota-Babiloni, A. Barragan-Cervera, and K. Kontomaris, Appl. Thermal Eng., 71, 204 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Korea Gas Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Nyon Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, R., Lee, Y., Song, K.H. et al. Effects of Nucleating Agent on the Thermal Conductivity and Creep Strain Behavior of Rigid Polyurethane Foams Blown by an Environment-Friendly Foaming Agent. Macromol. Res. 29, 15–23 (2021). https://doi.org/10.1007/s13233-021-9003-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9003-x

Keywords

Navigation