Log in

Dopa-Empowered Schiff Base Forming Alginate Hydrogel Glue for Rapid Hemostatic Control

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study we prepared tissue-adhesive hemostatic glue and assessed hemostatic effects on hepatic bleeding animal model. Alginate was used as primary polymer for the fabrication of hemostatic glue, oxidized for the introduction of the tissue-adhesive Schiff base forming aldehyde and then encoded with mussel-inspired dopa. In addition, polyallylamine (PAA) was selected for as an intra-structuring polymer which ensures the gel strength and allows instantaneous glue formation on the bleeding spot. Primary glue (OA glue) was quickly formed within 5 to 10 seconds after the mixing oxidized alginate (OA) with PAA. The degree of oxidation and the mixing ratio of OA and PAA were precisely determined based on glue formation time and gel strength. And the extend of dopa conjugation on OA was determined by the tissue adhesion force and the elasticity of the glue (Dopa-OA glue). Especially, elasticity of Dopa-OA glue was significantly enhanced after introduction of dopa to OA. Functional assay of Dopa-OA glue on hepatic bleeding animal model showed much enhanced hemostatic action. Dopa-OA glue is expected to provide novel injectable tissue adhesives for the treatment of hemorrhage caused by clinical procedures or trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Kelly, A. E. Ritenour, D. F. McLaughlin, K. A. Bagg, A. N. Apodaca, C. T. Mallak, L. Pearse, M. M. Lawnick, H. R. Champion, and J. B. Holcomb, J. Trauma, 64, S21 (2008).

  2. L. Montanaro, C. R. Arciola, E. Cenni, G. Ciapetti, F. Savioli, F. Filippini, and L. A. Barsanti, Biomaterials, 22, 59 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. P. Ferreira, R. Pereira, J. F. J. Coelho, A. F. M. Silva, and M. H. Gil, Int. J. Biol. Macromol., 40, 144 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. D. M. Toriumi, K. O'Grady, D. Desai, and A. Bagal, Plast. Reconstr. Surg., 102, 2209 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. S. Canonico, Acta Biomed., 74, Supple 2:21 (2003).

    PubMed  Google Scholar 

  6. K. H. Siedentop, J. J. Park, A. N. Shah, T. K. Bhattacharyya, and K. M. O'Grady, Am. J. Otolaryngol., 22, 230 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. R. Bitton and H. Bianco-Peled, Macromol. Biosci., 8, 393 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. O. Jeon, J. E. Samorezov, and E. Alsberg, Acta Biomater., 10, 47 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. A. B. Lansdown and M. J. Payne, J. R. Coll. Surg. Edinb., 39, 284 (1994).

    CAS  PubMed  Google Scholar 

  10. A. Sank, M. Chi, T. Shima, R. Reich, and G. R. Martin, Surgery, 106, 1141 (1989).

    CAS  PubMed  Google Scholar 

  11. C. M. Gao, M. Z. Liu, J. Chen, and X. Zhang, Polym. Degrad. Stab., 94, 1405 (2009).

    Article  CAS  Google Scholar 

  12. K. H. Bouhadir, K. Y. Lee, E. Alsberg, K. L. Damm, K. W. Anderson, and D. J. Mooney, Biotechnol. Prog., 17, 945 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. B. Balakrishnan and A. Jayakrishnan, Biomaterials, 26, 3941 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. J. H. Ryu, Y. Lee, W. H. Kong, T. G. Kim, T. G. Park, and H. Lee, Biomacromolecules, 12, 2653 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. S. H. Baik, J. H. Kim, H. H. Cho, S. N. Park, Y. S. Kim, and H. Suh, J. Surg. Res., 164, E221 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Lee, H. J. Chung, S. Yeo, C. H. Ahn, H. Lee, P. B. Messersmith, and T. G. Park, Soft Matter, 6, 977 (2010).

    Article  CAS  Google Scholar 

  17. H. Zhao and N. D. Heindel, Pharm. Res., 8, 400 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. X. M. Mo, H. Iwata, S. Matsuda, and Y. Ikada, J. Biomater. Sci. Polym. Ed., 11, 341 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. D. S. Jones, C. R. Irwin, A. D. Woolfson, J. Djokic, and V. Adams, J. Pharm. Sci., 88, 592 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. D. S. Jones, A. D. Woolfson, A. F. Brown, W. A. Coulter, C. McClelland, and C. R. Irwin, J. Control. Release, 67, 357 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. D. S. Jones, M. L. Bruschi, O. de Freitas, M. P. D. Gremiao, E. H. G. Lara, and G. P. Andrews, Int. J. Pharm., 372, 49 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Murakami, M. Yokoyama, H. Nishida, Y. Tomizawa, and H. Kurosawa, Colloids Surf. B: Biointerfaces, 65, 186 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Y. Murakami, M. Yokoyama, H. Nishida, Y. Tomizawa, and H. Kurosawa, J. Biomed. Mater. Res. Part B: Appl. Biomater., 91B, 102 (2009).

    Article  CAS  Google Scholar 

  24. J. D. Ferry, E. R. Fitzgerald, L. D. Grand, and M. L. Williams, Ind. Eng. Chem., 44, 703 (1952).

    Article  CAS  Google Scholar 

  25. S. Hong, K. Yang, B. Kang, C. Lee, I. T. Song, E. Byun, K. I. Park, S. W. Cho, and H. Lee, Adv. Funct. Mater., 23, 1774 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Geun Yang.

Additional information

Acknowledgments: This research was supported by Civil Military Co-Technology Development Program from Civil Military Technology Cooperation Center (16-CM-SS-07), and by Korea Research Fellowship Program and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2A2A07001272, 2017R1A6A3A11035722, 2017R1D1A1B03035654, 2016H1D3A1938159 and 2018R1A6A1A03025523), and partly supported by WCSL (World Class Smart Lab) research grant directed by Inha University.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C.K., Kim, MK., Lee, J. et al. Dopa-Empowered Schiff Base Forming Alginate Hydrogel Glue for Rapid Hemostatic Control. Macromol. Res. 27, 119–125 (2019). https://doi.org/10.1007/s13233-019-7026-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7026-3

Keywords

Navigation