Log in

Correlation of stress and optical properties in highly transparent polyimides for future flexible display

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

High transmittance and low birefringence are desirable optical properties in polyimide films which are promising flexible substrates in next generation display devices. However, thermal processes for the fabrication of polyimide films can cause anisotropic changes in the optical properties due to its rod-like molecular structure. Here we report the changes in optical retardation in transparent fluorinated polyimide films with sub-nanometer resolution and dimensional stability induced by deformation at high temperatures. As deformation is increased, the optical retardation is changed much prominently with enhancing thermo-dimensional stability. During thermal strain, in-plane molecular orientation is preferentially improved and stress-optical coefficient that quantifies the change in out of plane optical retardation is derived to be around 6×10–6 m2/N, which is higher compared to conventional plastic optical films. The experimental findings suggest that optimized process conditions for display substrates should be determined to address both changes in the optical and thermal stabilities. We suggest that this study can be useful information for large-scale film process to be further utilized in fabrication of the transparent polyimide films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, Science, 265, 1684 (1994).

    Article  CAS  Google Scholar 

  2. G. Crawford, Flexible Flat Panel Displays, John Wiley & Sons, New York, 2005.

    Book  Google Scholar 

  3. J. Lewis, Mater. Today, 9, 38 (2006).

    Article  CAS  Google Scholar 

  4. J. Peet, A. J. Heeger, and G. C. Bazan, Acc. Chem. Res., 42, 1700 (2009).

    Article  CAS  Google Scholar 

  5. M. Eashoo, D. Shen, Z. Wu, C. J. Lee, F. W. Harris, and S. Z. D. Cheng, Polymer, 34, 3209 (1993).

    Article  CAS  Google Scholar 

  6. A. E. Feiring, B. C. Auman, and E. R. Wonchoba, Macromolecules, 26, 2779 (1993).

    Article  CAS  Google Scholar 

  7. Y. Jung, Y. Yang, S. Kim, H.-S. Kim, T. Park, and B. W. Yoo, Eur. Polym. J., 49, 3642 (2013).

    Article  CAS  Google Scholar 

  8. C. D. Simone, B. C. Auman, P. F. Carcia, and R. A. Wessel, U.S. Patent 7550194 (2005).

    Google Scholar 

  9. Y. Yang, Y. Jung, M. D. Cho, S. G. Lee, and S. Kwon, RSC Adv., 5, 57339 (2015).

    Article  CAS  Google Scholar 

  10. Y. Jung, Y. Yang, S. Lee, S. Byun, H. Jeon, and M. D. Cho, Polymer, 59, 200 (2015).

    Article  CAS  Google Scholar 

  11. G. Kim, S. Byun, S. Kim, Y. Yang, S. Kwon, and Y. Jung, Polymer, 68, 293 (2015).

    Article  CAS  Google Scholar 

  12. Y. Jung, S. Song, S. Kim, Y. Yang, J. Chae, T. Park, and M. D. Cho, Appl. Phys. Lett., 102, 031602-1-4 (2013).

  13. R. J. Kline, D. M. DeLongchamp, D. A. Fischer, E. K. Lin, M. Heeney, I. McCulloch, and M. F. Toney, Appl. Phys. Lett., 90, 062117-1-3 (2007).

  14. M. T. Pottiger, J. C. Coburn, and J. R. Edman, J. Polym. Sci., Part B: Polym. Phys., 32, 825 (1994).

    Article  CAS  Google Scholar 

  15. B. R. Hahn and J. H. Wendorff, Polymer, 26, 1619 (1985).

    Article  CAS  Google Scholar 

  16. J. S. Machell, J. Greener, and B. A. Contestable, Macromolecules, 23, 186 (1990).

    Article  CAS  Google Scholar 

  17. S. Ando, T. Sawada, and Y. Inoue, ACS Symposium Series, 579, 283 (1995).

    Google Scholar 

  18. K. **e, J. G. Liu, H. W. Zhou, S. Y. Zhang, M. H. He, and S. Y. Yang, Polymer, 42, 7267 (2001).

    Article  CAS  Google Scholar 

  19. Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, Adv. Opt. Mater., 1, 256 (2013).

    Article  Google Scholar 

  20. S.-H. Baek, J.-W. Kang, X. Li, M.-H. Lee, and J.-J. Kim, Proceeding SPIE, 4991, 406 (2003).

    Article  CAS  Google Scholar 

  21. M. Ree, C. W. Chu, and M. J. Goldberg, J. Appl. Phys., 75, 1410 (1994).

    Article  CAS  Google Scholar 

  22. W. Zhou, C. Diehl, D. Murray, K. A. Koppi, S. Hahn, and S-T. Wu, Journal of the SID, 18, 66 (2010).

    CAS  Google Scholar 

  23. G. Khanarian, Opt. Eng., 40, 1024 (2001).

    Article  CAS  Google Scholar 

  24. J. H. Okura, S. Shetty, B. Ramakrishnan, A. Dasgupta, J. F. J. M. Caers, T. Reinikainen, Microelectronics Reliability, 40, 1173 (2000).

    Article  Google Scholar 

  25. J. B. Nysæther, P. Lundström, and J. Liu, Hybrids, and Manufacturing Technology-Part A, 21, 281 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yooseong Yang or Soonchul Kwon.

Additional information

Acknowledgments: The authors thank Dr. Tai-gyoo Park for useful discussion. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1C1B2014633). This work was supported by a 2-Year Research Grant of Pusan National University.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, Y., Jeong, B., Yang, Y. et al. Correlation of stress and optical properties in highly transparent polyimides for future flexible display. Macromol. Res. 25, 971–975 (2017). https://doi.org/10.1007/s13233-017-5126-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5126-5

Keywords

Navigation