Log in

Effects of clay modification on crystallization behavior, physical, and morphological properties of poly(butylene terephthalate) nanocomposites

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Poly(butylene terephthalate) (PBT) nanocomposites of various clay types and contents were prepared by in situ polymerization. This study examined the effect of surface urethane modification of clay (30BM) on the mechanical properties and isothermal and nonisothermal crystallization behavior of modified clay compared to pristine clay (Na) and alkyl modified clay (30B) nanocomposites. The PBT/30BM nanocomposites exhibited increased mechanical properties due to the enhanced affinity between the clay and PBT matrix. In the case of the PBT/Na nanocomposites, pristine clay can retard the crystallization rate due to steric hindrance of the narrow silicate layers. The PBT/30BM nanocomposites exhibited the fastest crystallization rates of all the samples due to wide gallery spacing and strong interactions between the 30BM and PBT molecules that lead to a nucleation effect during the crystallization process. Polarized optical microscopy showed that the spherulites in the PBT/30BM nanocomposites became smaller and increased the nuclei density at the designated crystallization temperature compared to Homo PBT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Imai, S. Nishimura, E. Abe, H. Tateyama, A. Abiko, A. Yamaguchi, T. Aoyama, and H. Taguchi, Chem. Mater., 14, 477 (2002).

    Article  CAS  Google Scholar 

  2. R. Xu, E. Manias, A. Snyder, and J. Runt, Macromolecules, 34, 337 (2001).

    Article  CAS  Google Scholar 

  3. T. D. Fornes, D. L. Hunter, and D. R. Paul, Macromolecules, 37, 1793 (2004).

    Article  CAS  Google Scholar 

  4. S. T. Lim, Y. H. Hyun, H. J. Choi, and M. S. Jhon, Chem. Mater., 14, 1839 (2002).

    Article  CAS  Google Scholar 

  5. S. S. Ray, K. Okamoto, and M. Okamoto, Macromolecules, 36, 2355 (2003).

    Article  CAS  Google Scholar 

  6. S. Y. Hwang, W. D. Lee, J. S. Lim, K. H. Park, and S. S. Im, J. Polym. Sci. Part B: Polym. Phys., 46, 1022 (2008).

    Article  CAS  Google Scholar 

  7. W. D. Lee and S. S. Im, J. Polym. Sci. Part B: Polym. Phys., 45, 28 (2007).

    Article  CAS  Google Scholar 

  8. J. H. Chang, Y. U. An, and G. S. Soo, J. Polym. Sci. Part B: Polym. Phys., 41, 94 (2003).

    Article  CAS  Google Scholar 

  9. A. Martínez-Gómez, E. Pérez, and C. Álvarez, Polymer, 50, 1447 (2009).

    Article  Google Scholar 

  10. J. T. Xu, Y. Q. Zhao, Q. Wang, and Z. Q. Fan, Polymer, 46, 11978 (2005).

    Article  CAS  Google Scholar 

  11. Y. Someya, T. Nakazato, N. Teramoto, and M. Shibata, J. Appl. Polym. Sci., 91, 1463 (2004).

    Article  CAS  Google Scholar 

  12. G. X. Chen, H. S. Kim, J. H. Shim, and J. S. Yoon, Macromolecules, 38, 3738 (2005).

    Article  CAS  Google Scholar 

  13. J. Y. Nam, S. S. Ray, and M. Okamoto, Macromolecules, 36, 7126 (2003).

    Article  CAS  Google Scholar 

  14. H. L. Tyan, C. M. Leu, and K. H. Wei, Chem. Mater., 13, 222 (2001).

    Article  CAS  Google Scholar 

  15. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002).

    Article  CAS  Google Scholar 

  16. S. Y. Hwang, E. S. Yoo, and S. S. Im, Polym. Degrad. Stab., 94, 2163 (2009).

    Article  CAS  Google Scholar 

  17. X. Li, T. K. Kang, W. J. Cho, J. K. Lee, and C. S. Ha, Macromol. Rapid Commun., 22, 1306 (2001).

    Article  CAS  Google Scholar 

  18. R. R. Gallucci and B. R. Patel, in Modern polyesters: Chemistry and Technology of Polyesters and Copolyesters, J. Scheirs and T. E. Long, Wiley, Chichester, UK, 1997, pp 293–321.

    Google Scholar 

  19. F. Wu, T. **e, and G. Yang, J. Polym. Sci. Part B: Polym. Phys., 48, 1853 (2010).

    Article  CAS  Google Scholar 

  20. J. W. Huang, J. Polym. Sci. Part B: Polym. Phys., 46, 564 (2008).

    Article  CAS  Google Scholar 

  21. B. J. Chisholm, R. B. Moore, G. Barber, F. Khouri, A. Hempstead, M. Larsen, E. Olson, J. Kelley, G. Balch, and J. Caraher, Macromolecules, 35, 5508 (2002).

    Article  CAS  Google Scholar 

  22. E. Amendola and P. Scarfato, Polym. Eng. Sci., 44, 1012 (2004).

    Article  Google Scholar 

  23. D. Wu, C. Zhou, Z. Hong, D. Mao, and Z. Bian, Eur. Polym. J., 41, 2199 (2005).

    Article  CAS  Google Scholar 

  24. D. Wu, C. Zhou, W. Yu, and X. Fan, J. Polym. Sci. Part B: Polym. Phys., 48, 2807 (2005).

    Article  Google Scholar 

  25. J. H. Chang and M. K. Mun, J. Appl. Polym. Sci., 100, 1247 (2006).

    Article  CAS  Google Scholar 

  26. Y. W. Chang, S. S. Kim, and Y. B. Kyung, Polym. Int., 54, 348 (2005).

    Article  CAS  Google Scholar 

  27. D. Wu, C. Zhou, X. Fan, D. Mao, and Zhang Bian, J. Appl. Polym. Sci., 99, 3257 (2006).

    Article  CAS  Google Scholar 

  28. D. Wu, C. Zhou, F. **e, D. Mao, and B. Zhang, Polym. Compos., 13, 61 (2005).

    CAS  Google Scholar 

  29. X. Chen, J. Xu, H. Lu, and Y. Yang, J. Polym. Sci. Part B: Polym. Phys., 44, 2112 (2006).

    Article  CAS  Google Scholar 

  30. D. Wu, C. Zhou, X. Fan, D. Mao, and Z. Bian, J. Appl. Polym. Sci., 99, 3257 (2006).

    Article  CAS  Google Scholar 

  31. D. Kaempfer, R. Thomann, and R. Mülhaupt, Polymer, 43, 2909 (2002).

    Article  CAS  Google Scholar 

  32. T. D. Fornes and D. R. Paul, Polymer, 44, 3945 (2003).

    Article  CAS  Google Scholar 

  33. E. S. Yoo and S. S. Im, J. Environ. Polym. Degrad., 6, 223 (1998).

    Article  CAS  Google Scholar 

  34. S. Li, S. McCarthy, Macromolecules, 32, 4454 (1999).

    Article  CAS  Google Scholar 

  35. S. Y. Hwang, M. J. Ham, and S. S. Im, Polym. Degrad. Stab., 95, 1313 (2010).

    Article  CAS  Google Scholar 

  36. F. Samperia, C. Puglisib, R. Alcatab, and G. Montaudo, Polym. Degrad. Stab., 83, 11 (2004).

    Article  Google Scholar 

  37. M. Rong, M. Zhang, Y. Zheng, H. Zeng, R. Walter, and K. Friedrich, Polymer, 42, 167 (2001).

    Article  CAS  Google Scholar 

  38. S. S. Ray, K. Yamada, M. Okamoto, A. Ogami, and K. Ueda, Chem. Mater., 15, 1456 (2003).

    Article  CAS  Google Scholar 

  39. S. S. Ray, P. Maiti, M. Okamoto, K. Yamada, and K. Ueda, Macromolecules, 35, 3104 (2002).

    Article  CAS  Google Scholar 

  40. P. Maiti, K. Yamada, M. Okamoto, K. Ueda, and K. Okamoto, Chem. Mater., 14, 4654 (2002).

    Article  CAS  Google Scholar 

  41. Y. Wang, J. Gao, Y. Ma, and U. S. Agarwal, Composites Part B: Eng., 37, 399 (2006).

    Article  Google Scholar 

  42. J. H. Chang, Y. U. An, and G. S. Sur, J. Polym. Sci. Part B: Polym. Phys., 41, 94 (2003).

    Article  CAS  Google Scholar 

  43. J. Xu, Y. Zhao, Q. Wang, and Z. Fan, Polymer, 46, 11978 (2005).

    Article  CAS  Google Scholar 

  44. T. Wu and C. Liu, Polymer, 46, 5621 (2005).

    Article  CAS  Google Scholar 

  45. E. Maio, S. Iannace, L. Sorrentino, and L. Nicolais, Polymer, 45, 8893 (2004).

    Article  Google Scholar 

  46. S. Gestí, M. Zanetti, M. Lazzari, L. Franco, and J. Puiggalí, J. Polym. Sci. Part B: Polym. Phys., 46, 2234 (2008).

    Article  Google Scholar 

  47. M. Grlbert and F. J. Hybart, Polymer, 13, 327 (1972).

    Article  Google Scholar 

  48. C. F. Pratt and S. Y. Hobbs, Polymer, 17, 12 (1976).

    Article  CAS  Google Scholar 

  49. D. Wu, C. Zhou, X. Fan, D. Mao, and Z. Bian, Polym. Polym. Compos., 13, 61 (2005).

    CAS  Google Scholar 

  50. X. F. Lu and J. N. Hay, Polymer, 42, 9423 (2001).

    Article  CAS  Google Scholar 

  51. A. Adam, M. Johnson, and S. Robert, J. Polym. Sci. Part B: Polym. Phys., 45, 1344 (2007).

    Article  Google Scholar 

  52. Z. Gan, H. Abe, H. Kurokawa, and Y. Doi, Biomacromolecules, 2, 605 (2001).

    Article  CAS  Google Scholar 

  53. C. S. Park, K. J. Lee, J. D. Nam, and S. W. Kim, J. Appl. Polym. Sci., 78, 576 (2000).

    Article  CAS  Google Scholar 

  54. A. M. Adam, M. Johnson, S. K. Yeh, and R. Gupta, Compos. Part A: Appl. Sci. Manuf., 39, 204 (2008).

    Article  Google Scholar 

  55. T. X. Liu, Z. S. Mo, S. E. Wang, and H. F. Zhang, Polym. Eng. Sci., 37, 568 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SeungSoon Im.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, S., Khaydarov, A.A., Park, J. et al. Effects of clay modification on crystallization behavior, physical, and morphological properties of poly(butylene terephthalate) nanocomposites. Macromol. Res. 19, 699–710 (2011). https://doi.org/10.1007/s13233-011-0711-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0711-5

Keywords

Navigation