Log in

New insights into comprehensive analysis of magnesium transporter (MGT) gene family in rice (Oryza sativa L.)

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Magnesium transporters (MGTs) regulate magnesium absorption, transport, and redistribution in higher plants. To investigate the role of the Oryza sativa MGTs gene family members under salt stress, this study analyzed the protein properties, gene structure, phylogenetic relationship, synteny patterns, expression, and co-expression networks of 23 non-redundant OsMGT. The evolutionary relationship of the OsMGT gene family was fully consistent with their functional domain, and were divided into three main classes based on the conserved domain: MMgT, CorA-like, and NIPA. The α/β patterns in the protein structures were highly similar in the CorA-like and NIPA members, with the conserved structures in the Mg2+-binding and catalytic regions. The CorA-like clade-related proteins demonstrated the highest numbers of protein channels with Pro, Ser, Lys, Gly, and Tyr, as the critical binding residues. The expression analysis of OsMGT genes in various tissues showed that MGTs’ gene family may possess critical functions during rice development. Gene expression analysis of candidate OsMGT using reverse-transcription quantitative real-time PCR (RT-qPCR) found that four OsMGT genes exhibited different expression patterns in salt-sensitive and salt-tolerant rice genotypes. We hypothesize that the OsMGT gene family members may be involved in responses to salt stress. These findings could be useful for further functional investigation of MGTs as well as defining their involvement in abiotic stress studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Arab M, Najafi Zarrini H, Nematzadeh G, Heidari P, Hashemipetroudi SH, Kuhlmann M (2023) Comprehensive analysis of calcium sensor families, CBL and CIPK, in Aeluropus littoralis and their expression profile in response to salinity. Genes 14(3):753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(suppl_2):W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biłas R, Szafran K, Hnatuszko-Konka K, Kononowicz AK (2016) Cis-regulatory elements used to control gene expression in plants. Plant Cell Tiss Organ Cult (PCTOC) 127(2):269–287. https://doi.org/10.1007/s11240-016-1057-7

    Article  CAS  Google Scholar 

  • Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649

    Article  CAS  PubMed  Google Scholar 

  • Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49(D1):D344–D354

    Article  CAS  PubMed  Google Scholar 

  • Bolser DM, Staines DM, Perry E, Kersey PJ (2017) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data. Plant genomics databases. Springer, pp 1–31

    Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2013) Low-pH and aluminum resistance in Arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots. Plant Cell Physiol 54(7):1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Braun P, Aubourg S, Leene JV, Jaeger GD, Lurin C (2013) Plant protein interactomes. Annu Rev Plant Biol 64(1):161–187. https://doi.org/10.1146/annurev-arplant-050312-120140

    Article  CAS  PubMed  Google Scholar 

  • Bui DM, Gregan J, Jarosch E, Ragnini A, Schweyen RJ (1999) The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J Biol Chem 274(29):20438–20443

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li L-g, Liu Z-h, Yuan Y-j, Guo L-l, Mao D-d, Tian L-f, Chen L-b, Luan S, Li D-p (2009) Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Res 19(7):887–898

    Article  PubMed  Google Scholar 

  • Chen ZC, Yamaji N, Motoyama R, Nagamura Y, Ma JF (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159(4):1624–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZC, Yamaji N, Horie T, Che J, Li J, An G, Ma JF (2017) A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol 174(3):1837–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZC, Peng WT, Li J, Liao H (2018) Functional dissection and transport mechanism of magnesium in plants. Seminars in cell & developmental biology. Elsevier, pp 142–152

    Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, **a R (2020) TBtools—an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. https://doi.org/10.1016/j.molp.2020.06.009

    Article  PubMed  Google Scholar 

  • Deng W, Luo K, Li D, Zheng X, Wei X, Smith W, Thammina C, Lu L, Li Y, Pei Y (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J Exp Bot 57(15):4235–4243

    Article  CAS  PubMed  Google Scholar 

  • Faraji S, Filiz E, Kazemitabar SK, Vannozzi A, Palumbo F, Barcaccia G, Heidari P (2020) The AP2/ERF gene family in Triticum durum: genome-wide identification and expression analysis under drought and salinity stresses. Genes 11(12):1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraji S, Ahmadizadeh M, Heidari P (2021) Genome-wide comparative analysis of Mg transporter gene family between Triticum turgidum and Camelina sativa. Biometals 34(3):639–660

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J (2013) Pfam: the protein families database. Nucleic Acids Res 42(D1):D222–D230

    Article  PubMed  PubMed Central  Google Scholar 

  • Franken G, Huynen M, Martínez-Cruz L, Bindels R, de Baaij J (2022) Structural and functional comparison of magnesium transporters throughout evolution. Cell Mol Life Sci 79(8):418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao Y (2012) Protein-protein interactions in plants. Plant Cell Physiol 53(4):617–625. https://doi.org/10.1093/pcp/pcs026

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Springer, pp 571–607

    Chapter  Google Scholar 

  • Ge M, Zhong R, Sadeghnezhad E, Hakeem A, **ao X, Wang P, Fang J (2022) Genome-wide identification and expression analysis of magnesium transporter gene family in grape (Vitis vinifera). BMC Plant Biol 22(1):1–15

    Article  Google Scholar 

  • Gebert M, Meschenmoser K, Sa S, Weghuber J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V (2009) A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. Plant Cell 21(12):4018–4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6):681–684. https://doi.org/10.1093/bioinformatics/11.6.681

    Article  CAS  Google Scholar 

  • Goytain A, Quamme GA (2008) Identification and characterization of a novel family of membrane magnesium transporters, MMgT1 and MMgT2. Am J Physiol-Cell Physiol. https://doi.org/10.1152/ajpcell.00238.2007

    Article  PubMed  Google Scholar 

  • Gransee A, Führs H (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368(1):5–21

    Article  CAS  Google Scholar 

  • Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. Crop J 4(2):83–91

    Article  Google Scholar 

  • Gupta R, Jensen LJ, Brunak S (2002) Orphan protein function and its relation to glycosylation. Bioinform Genome Anal. https://doi.org/10.1007/978-3-662-04747-7_13

    Article  Google Scholar 

  • Hashemipetroudi SH, Nematzadeh G, Ahmadian G, Yamchi A, Kuhlmann M (2018) Assessment of DNA contamination in RNA samples based on ribosomal DNA. JoVE 131:e55451

    Google Scholar 

  • Hashemipetroudi SH, Arab M, Heidari P, Kuhlmann M (2023a) Genome-wide analysis of the laccase (LAC) gene family in Aeluropus littoralis: a focus on identification, evolution and expression patterns in response to abiotic stresses and ABA treatment. Front Plant Sci 14:1112354

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashemipetroudi SH, Ghorbani H, Rostami M, Rezaei A, Goodwin PH, Kuhlmann M (2023b) Selection of reference genes for RT-qPCR analysis of rice with Rhizoctonia solani infection and biocontrol PGPR/KSi application. Mol Biol Rep 50:4225–4237

    Article  CAS  PubMed  Google Scholar 

  • Hashiguchi A, Komatsu S (2016) Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes 4(4):42

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidari P, Faraji S, Poczai P (2021) Magnesium transporter gene family: genome-wide identification and characterization in Theobroma cacao, Corchorus capsularis, and Gossypium hirsutum of family Malvaceae. Agronomy 11(8):1651

    Article  CAS  Google Scholar 

  • Heidari P, Puresmaeli F, Mora-Poblete F (2022) Genome-wide identification and molecular evolution of the magnesium transporter (MGT) gene family in Citrullus lanatus and Cucumis sativus. Agronomy 12(10):2253

    Article  CAS  Google Scholar 

  • Hermans C, Conn SJ, Chen J, **ao Q, Verbruggen N (2013) An update on magnesium homeostasis mechanisms in plants. Metallomics 5(9):1170–1183

    Article  CAS  PubMed  Google Scholar 

  • Hu B, ** J, Guo A-Y, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazanecki CC, Uzwiak DJ, Denhardt DT (2007) Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J Cell Biochem 102(4):912–924

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khuman A, Arora S, Makkar H, Patel A, Chaudhary B (2020) Extensive intragenic divergences amongst ancient WRKY transcription factor gene family is largely associated with their functional diversity in plants. Plant Gene 22:100222

    Article  CAS  Google Scholar 

  • Khuman A, Kumar V, Chaudhary B (2022) Evolutionary expansion and expression dynamics of cytokinin-catabolizing CKX gene family in the modern amphidiploid mustard (Brassica sp.). 3 Biotech 12(9):233

    Article  PubMed  PubMed Central  Google Scholar 

  • Kia-Ki H, Martinage A (1992) Post-translational chemical modification (s) of proteins. Int J Biochem 24(1):19–28

    Article  Google Scholar 

  • Kim J-K, Cho Y, Lee M, Laskowski RA, Ryu SE, Sugihara K, Kim D-S (2015) BetaCavityWeb: a webserver for molecular voids and channels. Nucleic Acids Res 43(W1):W413–W418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi NI, Tanoi K (2015) Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants. Int J Mol Sci 16(9):23076–23093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. https://doi.org/10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari R, Kumar P, Sharma V, Kumar H (2019) Seedling stage salt stress response specific characterization of genetic polymorphism and validation of SSR markers in rice. Physiol Mol Biol Plants 25:407–419

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Tutone AF, Drummond RS, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13(12):2761–2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L-G, Sokolov LN, Yang Y-H, Li D-P, Ting J, Pandy GK, Luan S (2008) A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Mol Plant 1(4):675–685

    Article  CAS  PubMed  Google Scholar 

  • Li H, Du H, Huang K, Chen X, Liu T, Gao S, Liu H, Tang Q, Rong T, Zhang S (2016) Identification, and functional and expression analyses of the CorA/MRS2/MGT-type magnesium transporter family in maize. Plant Cell Physiol 57(6):1153–1168

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yokosho K, Liu S, Cao HR, Yamaji N, Zhu XG, Liao H, Ma JF, Chen ZC (2020) Diel magnesium fluctuations in chloroplasts contribute to photosynthesis in rice. Nat Plants 6(7):848–859

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Guo L-X, Luo L-J, Liu Y-Z, Peng S-A (2019) Identification of the magnesium transport (MGT) family in Poncirus trifoliata and functional characterization of PtrMGT5 in magnesium deficiency stress. Plant Mol Biol 101(6):551–560

    Article  CAS  PubMed  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB, De Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50(3):437–450

    Article  CAS  PubMed  Google Scholar 

  • Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R (2013) Gene duplication as a major force in evolution. J Genet 92(1):155–161

    Article  PubMed  Google Scholar 

  • Manishankar P, Wang N, Köster P, Alatar AA, Kudla J (2018) Calcium signaling during salt stress and in the regulation of ion homeostasis. J Exp Bot 69(17):4215–4226

    Article  CAS  Google Scholar 

  • Mao D, Chen J, Tian L, Liu Z, Yang L, Tang R, Li J, Lu C, Yang Y, Shi J (2014) Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. Plant Cell 26(5):2234–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modarresi M, Nematzadeh GA, Moradian F (2013) Salinity response pattern and isolation of catalase gene from halophyte plant Aeluropus littoralis. Photosynthetica 51(4):621–629. https://doi.org/10.1007/s11099-013-0060-z

    Article  CAS  Google Scholar 

  • Niu Y, ** G, Zhang YS (2014) Root development under control of magnesium availability. Plant Signal Behav 9(9):e29720

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng H-Y, Qi Y-P, Lee J, Yang L-T, Guo P, Jiang H-X, Chen L-S (2015) Proteomic analysis of Citrus sinensis roots and leaves in response to long-term magnesium-deficiency. BMC Genomics 16(1):1–24

    Article  Google Scholar 

  • Piskacek M, Zotova L, Zsurka G, Schweyen RJ (2009) Conditional knockdown of hMRS2 results in loss of mitochondrial Mg+ uptake and cell death. J Cell Mol Med 13(4):693–700

    Article  CAS  PubMed  Google Scholar 

  • Regon P, Chowra U, Awasthi JP, Borgohain P, Panda SK (2019) Genome-wide analysis of magnesium transporter genes in Solanum lycopersicum. Comput Biol Chem 80:498–511

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Kobayashi NI, Tanoi K, Iwata N, Suzuki H, Iwata R, Nakanishi TM (2013) Expression and functional analysis of the CorA-MRS2-ALR-type magnesium transporter family in rice. Plant Cell Physiol 54(10):1673–1683

    Article  CAS  PubMed  Google Scholar 

  • Schäffers OJ, Hoenderop JG, Bindels RJ, de Baaij JH (2018) The rise and fall of novel renal magnesium transporters. Am J Physiol-Renal Physiol 314(6):F1027–F1033

    Article  PubMed  Google Scholar 

  • Schock I, Gregan J, Steinhauser S, Schweyen R, Brennicke A, Knoop V (2000) A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group II intron-splicing mutant. Plant J 24(4):489–501

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28(1):231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senbayram M, Gransee A, Wahle V, Thiel H (2015) Role of magnesium fertilisers in agriculture: plant–soil continuum. Crop Pasture Sci 66(12):1219–1229

    Article  CAS  Google Scholar 

  • Sheshadri S, Nishanth M, Simon B (2016) Stress-mediated cis-element transcription factor interactions interconnecting primary and specialized metabolism in planta. Front Plant Sci 7:1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RL, Maguire ME (1998) Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol 28(2):217–226

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Thompson LJ, Maguire ME (1995) Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J Bacteriol 177(5):1233–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snider NT, Omary MB (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15(3):163–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Yang X, Li H, Shuai Y, Chen W, Ma D, Lü Z (2023) Uncovering the role of wheat magnesium transporter family genes in abiotic responses. Front Plant Sci. https://doi.org/10.3389/fpls.2023.1078299

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong M, Liu W, He H, Hu H, Ding Y, Li X, Huang J, Yin L (2020) Identification and functional analysis of the CorA/MGT/MRS2-type magnesium transporter in banana. PLoS One 15(10):e0239058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tränkner M, Jákli B, Tavakol E, Geilfus C-M, Cakmak I, Dittert K, Senbayram M (2016) Magnesium deficiency decreases biomass water-use efficiency and increases leaf water-use efficiency and oxidative stress in barley plants. Plant Soil 406(1):409–423

    Article  Google Scholar 

  • Visser RGF, Bachem CWB, de Boer JM, Bryan GJ, Chakrabati SK, Feingold S, Gromadka R, van Ham RCHJ, Huang S, Jacobs JME, Kuznetsov B, de Melo PE, Milbourne D, Orjeda G, Sagredo B, Tang X (2009) Sequencing the potato genome: outline and first results to come from the elucidation of the sequence of the world’s third most important food crop. Am J Potato Res 86(6):417. https://doi.org/10.1007/s12230-009-9097-8

    Article  CAS  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hua X, Xu J, Chen Z, Fan T, Zeng Z, Wang H, Hour A-L, Yu Q, Ming R (2019) Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum. BMC Genomics 20(1):1–18

    Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(2):407–410

    Article  Google Scholar 

  • Wilkins MR, Gasteiger E, Sanchez JC, Bairoch A, Hochstrasser DF (1998) Two-dimensional gel electrophoresis for proteome projects: the effects of protein hydrophobicity and copy number. Electrophoresis 19(8–9):1501–1505

    Article  CAS  PubMed  Google Scholar 

  • Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31(13):3316–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Gu S, Wang X, Li W, Tang Z, Xu C (2008) Molecular evolution of the CPP-like gene family in plants: insights from comparative genomics of Arabidopsis and rice. J Mol Evol 67(3):266–277

    Article  CAS  PubMed  Google Scholar 

  • Yin S, Ze Y, Liu C, Li N, Zhou M, Duan Y, Hong F (2009) Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol Trace Elem Res 132(1):247–258

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Coronel V (1976) Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Sci Plant Nutr 22(2):207–211

    Article  CAS  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64(3):643–651

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li J, Zhao X-Q, Wang J, Wong GK-S, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinform 4(4):259–263

    Article  CAS  Google Scholar 

  • Zhang L, Wen A, Wu X, Pan X, Wu N, Chen X, Chen Y, Mao D, Chen L, Luan S (2019) Molecular identification of the magnesium transport gene family in Brassica napus. Plant Physiol Biochem 136:204–214

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Schranz ME (2017) Network approaches for plant phylogenomic synteny analysis. Curr Opin Plant Biol 36:129–134

    Article  PubMed  Google Scholar 

  • Zhao Z, Wang P, Jiao H, Tang C, Liu X, **g Y, Zhang S, Wu J (2018) Phylogenetic and expression analysis of the magnesium transporter family in pear, and functional verification of PbrMGT7 in pear pollen. J Hortic Sci Biotechnol 93(1):51–63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU). The authors would like to thank the anonymous reviewers for their constructive comments and suggestions.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

NB-BJ, NB and GN designed the experiments. SM performed the experiments. SH-P and SM analyzed the data. SM and SH-P wrote the manuscript. SH-P reviewed the manuscript, and had all critical supervision. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Seyyed Hamidreza Hashemipetroudi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial, or otherwise.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadi, S.F., Babaeian Jelodar, N., Bagheri, N. et al. New insights into comprehensive analysis of magnesium transporter (MGT) gene family in rice (Oryza sativa L.). 3 Biotech 13, 322 (2023). https://doi.org/10.1007/s13205-023-03735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03735-4

Keywords

Navigation