Log in

Minimizing energy losses by introducing periodic pinning centers on superconducting films

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

We study vortex behavior in a set of samples of a rectangular array of antidots on a high-quality metallic superconducting Nb film. For this purpose, we measure magneto-resistance properties of some samples with varying dimensions, and also varying periods of antidots in the array. In the first phase, we characterize magneto-resistance curves of the samples with large period having weak pinning effect. The vortex array, due to the interstitial vortices being dominant, rapidly becomes disorder causing high differential resistance. Later, we measure the same curves with smaller period of the samples, and observe a strong pinning effect mainly due to the fact that the vortex array remains in order. We demonstrate that by decreasing the period of samples, energy loss in nano-engineered thin films may be minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baert M, Metlushko VV, Jonckheere R, Moshchalkov VV, Bruynseraede Y (1995) Composite flux-line lattices stabilized in superconducting films by a regular array of artificial defects. Phys Rev Lett 74(16):3269

    Article  Google Scholar 

  • Berdiyorov GR, Yu SH, **ao ZL, Peeters FM, Hua J, Imre A, Kwok WK (2009) Effect of sample geometry on the phase boundary of a mesoscopic superconducting loop. Phys Rev B 80(6):064511

    Article  Google Scholar 

  • Bezryadin A, Pannetier B (1995) Nucleation of superconductivity in a thin film with a lattice of circular holes. J Low Temp Phys 98(3–4):251–268

    Article  Google Scholar 

  • Bezryadin A, Pannetier B (1996) Role of edge superconducting states in trap** of multi-quanta vortices by microholes. Application of the bitter decoration technique. J Low Temp Phys 102(1–2):73–94

    Article  Google Scholar 

  • Cuadra-Solis PJ, Hernndez JM, Garcia-Santiago A, Tejada J, Vanacken J, Moshchalkov VV (2008) High-frequency vortex matching effects in Pb thin films with a periodic array of antidots. Phys C Supercond Appl 468(7–10):777–780

    Article  Google Scholar 

  • Grigorenko AN, Howells GD, Bending SJ, Bekaert J, Van Bael MJ, Van Look L, Moshchalkov VV, Bruynseraede Y, Borghs G, Kaya II, Stradling RA (2001) Direct imaging of commensurate vortex structures in ordered antidot arrays. Phys Rev B 63(5):052504

    Article  Google Scholar 

  • Hastings MB, Reichhardt CO, Reichhardt C (2003) Ratchet cellular automata. Phys Rev Lett 90(24):247004

    Article  Google Scholar 

  • Iye Y, Kuramochi E, Hara M, Endo A, Katsumoto S (2004) Hofstadter butterflies in a modulated magnetic field: superconducting wire network with magnetic decoration. Phys Rev B 70(14):144524

    Article  Google Scholar 

  • Kamran M, Anis-ur-Rehman M, Mansoor K, He SK, Qiu XG (2011) Temperature and current dependent matching fields in superconducting NbN film. J Supercond Nov Magn 24(1–2):919–921

    Article  Google Scholar 

  • Little WA, Parks RD (1962) Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys Rev Lett 9(1):9

    Article  Google Scholar 

  • Martin JI, Vlez M, Hoffmann A, Schuller IK, Vicent JL (2000) Temperature dependence and mechanisms of vortex pinning by periodic arrays of Ni dots in Nb films. Phys Rev B 62(13):9110

    Article  Google Scholar 

  • McMillan WL (1968) Transition temperature of strong-coupled superconductors. Phys Rev 167(2):331

    Article  Google Scholar 

  • Milosevic MV, Berdiyorov GR, Peeters FM (2007) Fluxonic cellular automata. Appl Phys Lett 91(21):212501

    Article  Google Scholar 

  • Mkrtchyan GS, Shmidt VV (1972) Interaction between a cavity and a vortex in a superconductor of the second kind. Sov J Exp Theor Phys 34:195

    Google Scholar 

  • Moshchalkov VV, Baert M, Metlushko VV, Rosseel E, Van Bael MJ, Temst K, Jonckheere R, Bruynseraede Y (1996) Magnetization of multiple-quanta vortex lattices. Phys Rev B 54(10):7385

    Article  Google Scholar 

  • Moshchalkov VV, Baert M, Metlushko VV, Rosseel E, Van Bael MJ, Temst K, Jonckheere R, Jonckheere R (1998) Pinning by an antidot lattice: the problem of the optimum antidot size. Phys Rev B 57(6):3615

    Article  Google Scholar 

  • Pannetier B, Chaussy J, Rammal R, Villegier JC (1984) Experimental fine tuning of frustration: two-dimensional superconducting network in a magnetic field. Phys Rev Lett 53(19):1845

    Article  Google Scholar 

  • Puig T, Rosseel E, Van Look L, Van Bael MJ, Moshchalkov VV, Bruynseraede Y, Jonckheere R (1998) Vortex configurations in a Pb/Cu microdot with a $2\times 2$ antidot cluster. Phys Rev B 58(9):5744

    Article  Google Scholar 

  • Reichhardt C, Reichhardt CO (2008) Moving vortex phases, dynamical symmetry breaking, and jamming for vortices in honeycomb pinning arrays. Phys Rev B 78(22):224511

    Article  Google Scholar 

  • Rosseel E, Puig T, Baert M, Van Bael MJ, Moshchalkov VV, Bruynseraede Y (1997) Upper critical field of Pb films with an antidot lattice. Phys C Supercond 282:1567–1568

    Article  Google Scholar 

  • Sadovskyy IA, Wang YL, **ao ZL, Kwok WK, Glatz A (2017) Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films. Phys Rev B 95(7):075303

    Article  Google Scholar 

  • Silhanek AV, Van Look L, Raedts S, Jonckheere R, Moshchalkov VV (2003) Guided vortex motion in superconductors with a square antidot array. Phys Rev B 68(21):214504

    Article  Google Scholar 

  • Stoll OM, Montero MI, Guimpel J, kerman JJ, Schuller IK (2002) Hysteresis and fractional matching in thin Nb films with rectangular arrays of nanoscaled magnetic dots. Phys Rev B 65(10):104518

    Article  Google Scholar 

  • Tinkham M (1996) Introduction to superconductivity. Courier Corporation, North Chelmsford

    Google Scholar 

  • Vizarim NP, Carlone M, Verga LG, Venegas PA (2017) Commensurability effects in the critical forces of a superconducting film with Kagom pinning array at submatching fields. Eur Phys J B 90(9):169

    Article  Google Scholar 

  • Welp U, **ao ZL, Jiang JS, Vlasko-Vlasov VK, Bader SD, Crabtree GW, Liang J, Chik H, Xu JM (2002) Superconducting transition and vortex pinning in Nb films patterned with nanoscale hole arrays. Phys Rev B 66(21):212507

    Article  Google Scholar 

  • Zechner G, Jausner F, Haag LT, Lang W, Dosmailov M, Bodea MA, Pedarnig JD (2017) Hysteretic vortex-matching effects in high-Tc superconductors with nanoscale periodic pinning landscapes fabricated by He ion-beam projection. Phys Rev Appl 8(1):014021

    Article  Google Scholar 

  • Zhang WJ, He SK, Liu HF, Xue GM, **ao H, Li BH, Wen ZC, Han XF, Zhao SP, Gu CZ, Qiu XG (2012) Edge superconducting state in Nb thin film with rectangular arrays of antidots. ar**v preprint ar**v:1203.0269

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kamran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamran, M., Naqvi, S.R., Akram, T. et al. Minimizing energy losses by introducing periodic pinning centers on superconducting films. Appl Nanosci 9, 113–117 (2019). https://doi.org/10.1007/s13204-018-0919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0919-1

Keywords

Navigation