Log in

Dynamics of Dipsastraea pallida-symbiont association following bleaching events across the northern Persian Gulf and Gulf of Oman

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Reef-building corals are in obligate symbiosis with dinoflagellates of the family Symbiodiniaceae. The partnership, however, is prone to breakdown as a result of thermal stress, which leads to coral bleaching. According to the Adaptive Bleaching Hypothesis, corals’ recovery from bleaching is profoundly influenced by forming stable associations with thermotolerant algal strains during bleaching. Consequently, the knowledge of the diversity of host-symbiont associations during this period is substantial. Since the extent of symbiont shuffling varies among different host taxa, we investigated the diversity of dominant Symbiodiniaceae in association with the scleractinian coral Dipsastraea pallida before and after massive bleaching events of 2017 in the Persian Gulf and 2018 in the Gulf of Oman. We observed a flexible association between D. pallida and five lineages of Symbiodiniaceae (i.e., ITS2-types A1.4, C3, C39, D1a, D5) with a clear regional pattern. However, the pattern of these associations was changed following bleaching events, with the complete replacement of Cladocopium-C39 by Durusdinium-D1a in the Gulf of Oman, and increased proportion of Durusdinium-D1a and disappearance of Symbiodinium-A1.4 in the northeastern Persian Gulf. In the westernmost Persian Gulf, on the other hand, a stable D. pallida-Cladocopium-C3 partnership was observed. These findings convey the potential of D. pallida to shift the prevalence of its symbiont communities within a population in response to bleaching, which may reflect symbiont shuffling and/or differential mortality and partly explain the predominance of Dipsastraea corals in the Persian Gulf and Gulf of Oman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Al Azhar M, Temimi M, Zhao J, Ghedira H (2016) Modeling of circulation in the Arabian Gulf and the Sea of Oman: skill assessment and seasonal thermohaline structure. J Geophys Res: Oceans 121:1700–1720

  • Baker AC (1999) The symbiosis ecology of reef-building corals. PhD Dissertation. University of Miami

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  PubMed  Google Scholar 

  • Bauman AG, Baird AH, Cavalcante GH (2011) Coral reproduction in the world’s warmest reefs: southern Persian Gulf (Dubai, United Arab Emirates). Coral Reefs 30:405–413

  • Bauman AG, Pratchett MS, Baird AH, Riegl B, Heron SF, Feary DA (2013) Variation in the size structure of corals is related to environmental extremes in the Persian Gulf. Mar Environ Res 84:43–50

    Article  CAS  PubMed  Google Scholar 

  • Benayahu Y (1997) Developmental episodes in reef soft corals: ecological and cellular determinants. In: Proc 8th Int Coral Reef Symp, 1997, 1213–1218

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linnean Soc 166:465–529

    Article  Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–326

    Article  Google Scholar 

  • Burt JA, Paparella F, Al-Mansoori N, Al-Mansoori A, Al-Jailani H (2019) Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs 38:567–589

    Article  Google Scholar 

  • Cerutti JMB, Burt AJ, Haupt P, Bunbury N, Mumby PJ, Schaepman-Strub G (2020) Impacts of the 2014–2017 global bleaching event on a protected remote atoll in the Western Indian Ocean. Coral Reefs 39:15–26

    Article  Google Scholar 

  • Chang J-M, Di Tommaso P, Lefort V, Gascuel O, Notredame C (2015) TCS: a web server for multiple sequence alignment evaluation and phylogenetic reconstruction. Nucleic Acids Res 43:W3–W6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles SL (2003) Coral species diversity and environmental factors in the Arabian Gulf and the Gulf of Oman: a comparison to the Indo-Pacific region. Atoll Res Bull 507:1–19

    Article  Google Scholar 

  • NOAA Coral Reef Watch. 2019 Updated daily. NOAA Coral Reef Watch version 3.1 daily 5km satellite regional Virtual Station time series data for Southeast Florida. College Park, Maryland, USA: NOAA Coral Reef Watch. Data set accessed 2020-04-04 at https://coralreefwatch.noaa.gov/product/vs/data.php

  • Cunning R, Silverstein RN, Baker AC (2018) Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals. Coral Reefs 37:145–152

    Article  Google Scholar 

  • D’angelo C, Hume BCC, Burt J, Smith EG, Achterberg EP, Wiedenmann J (2015) Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. ISME J 9:2551–2560

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies SW, Ries JB, Marchetti A, Castillo KD (2018) Symbiodinium functional diversity in the coral Siderastrea siderea is influenced by thermal stress and reef environment, but not ocean acidification. Front Mar Sci 5:150

    Article  Google Scholar 

  • Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD (2012) GeoSymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium–host symbioses. Mol Ecol Resour 12:369–373

    Article  PubMed  Google Scholar 

  • Furby KA, Bouwmeester J, Berumen ML (2013) Susceptibility of Central Red Sea corals during a major bleaching event. Coral Reefs 32:505–513

    Article  Google Scholar 

  • Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 182:324–332

    Article  CAS  PubMed  Google Scholar 

  • Ghazilou A, Koochaknejad E, Ershadifar H, Negarestan H, Kor K, Baskaleh G (2019) Infestation biology of Phallusia nigra (Tunicata, Phlebobranchia) on hard corals in a subtropical bay. Mar Ecol Prog Ser 626:135–143

    Article  CAS  Google Scholar 

  • Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7

    Article  Google Scholar 

  • Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, McGinley M, Baumann J, Matsui Y (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Chang Biol 20:3823–3833

    Article  PubMed  Google Scholar 

  • Guest JR, Low J, Tun K, Wilson B, Ng C, Raingeard D, Ulstrup KE, Tanzil JTI, Todd PA, Toh TC (2016) Coral community response to bleaching on a highly disturbed reef. Sci Rep 6:1–10

    Article  CAS  Google Scholar 

  • Hoadley KD, Lewis AM, Wham DC, Pettay DT, Grasso C, Smith R, Kemp DW, LaJeunesse TC, Warner ME (2019) Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci Rep 9:1–15

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Google Scholar 

  • Howells EJ, Bauman AG, Vaughan GO, Hume BCC, Voolstra CR, Burt JA (2020) Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol Ecol 29:899–911

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hume B, D’angelo C, Burt J, Baker AC, Riegl B, Wiedenmann J (2013) Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Pollut Bull 72:313–322

    Article  CAS  PubMed  Google Scholar 

  • Hume BCC, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:1–8

    Article  CAS  Google Scholar 

  • INIOAS (2017) Widespread bleaching of coral reefs in Chabahar Bay due to increased temperature (in Persian). Retrieved from http://www.inio.ac.ir/Default.aspx?tabid=822&ctl=Details&mid=2747&ItemID=1119

  • INIOAS (2020) Monitoring coastal areas in the Gulf of Oman (in Persian). Retrieved from http://www.inio.ac.ir/Default.aspx?tabid=2797

  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    Article  CAS  PubMed  Google Scholar 

  • Kavousi J, Tavakoli-Kolour P, Mohammadizadeh M, Bahrami A, Barkhordari A (2014) Mass coral bleaching in the northern Persian Gulf, 2012. Sci Mar 78:397–404

    Article  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemp DW, Hernandez-Pech X, Iglesias-Prieto R, Fitt WK, Schmidt GW (2014) Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral bleaching event. Limnol Oceanogr 59:788–797

    Article  CAS  Google Scholar 

  • Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV (2013) Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol Ecol 22:4335–4348

    Article  CAS  PubMed  Google Scholar 

  • Kongjandtre N, Ridgway T, Ward S, Hoegh-Guldberg O (2010) Broadcast spawning patterns of Favia species on the inshore reefs of Thailand. Coral Reefs 29:227–234

    Article  Google Scholar 

  • Lajeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Article  Google Scholar 

  • LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’event. Proc R Soc B Biol Sci 276:4139–4148

    Article  Google Scholar 

  • LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800

    Article  Google Scholar 

  • LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) clade D are different species. Phycologia 53:305–319

    Article  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580

    Article  CAS  PubMed  Google Scholar 

  • Levinton JS, Levinton JS (1995) Marine biology: function, biodiversity, ecology (Vol 420). Oxford University Press, New York

  • Loghmani M, Sadeghi P (2012) Identification and study health status of coral reefs in Chabahar Bay (Oman Sea). J Anim Environ 4:57–68

    Google Scholar 

  • Mostafavi PG, Fatemi SMR, Shahhosseiny MH, Hoegh-Guldberg O, Loh WKW (2007) Predominance of clade D Symbiodinium in shallow-water reef-building corals off Kish and Larak Islands (Persian Gulf, Iran). Mar Biol 153:25–34

    Article  Google Scholar 

  • Mostafavi PG, Ashrafi MG, Dehghani H (2013) Are symbiotic algae in corals in northern parts of the Persian Gulf resistant to thermal stress? Aquat Ecosyst Health Manag 16:177–182

    Article  Google Scholar 

  • Oladi M, Shokri MR (2021) Multiple benthic indicators are efficient for health assessment of coral reefs subjected to petroleum hydrocarbons contamination: a case study in the Persian Gulf. J Hazard Mater 409:124993. https://doi.org/10.1016/j.jhazmat.2020.124993

    Article  CAS  PubMed  Google Scholar 

  • Oladi M, Shokri MR, Rajabi-Maham H (2017) Application of the coral health chart to determine bleaching status of Acropora downingi in a subtropical coral reef. Ocean Sci J 52:267–275. https://doi.org/10.1007/s12601-017-0025-4

    Article  Google Scholar 

  • Oladi M, Shokri MR, Rajabi-Maham H (2019) Extremophile symbionts in extreme environments; a contribution to the diversity of Symbiodiniaceae across the northern Persian Gulf and Gulf of Oman. J Sea Res 144:105–111

    Article  Google Scholar 

  • Oliver TA, Palumbi SR (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440

    Article  Google Scholar 

  • Rezai H, Wilson S, Claereboudt M, Riegl B (2004) Coral reef status in the ROPME Sea area: Arabian/Persian Gulf, Gulf of Oman and Arabian Sea. Status Coral Reefs World 1:155–170

    Google Scholar 

  • Riegl BM, Benzoni F, Samimi-Namin K, Sheppard C (2012) The hermatypic scleractinian (hard) coral fauna of the Gulf. In: Riegl, B.M., Purkis, S.J. (Eds.), Coral reefs of the Gulf: Adaptation to Climatic Extremes. Springer Science+Business Media.

  • Riegl B, Johnston M, Purkis S, Howells E, Burt J, Steiner SCC, Sheppard CRC, Bauman A (2018) Population collapse dynamics in Acropora downingi, an Arabian/Persian Gulf ecosystem-engineering coral, linked to rising temperature. Glob Chang Biol 24:2447–2462

    Article  PubMed  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Press, Cold Spring Harbour

    Google Scholar 

  • Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci 105:10444–10449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIlroy SE, Wong JCY, Baker DM (2020) Competitive traits of coral symbionts may alter the structure and function of the microbiome. ISME J 14:2424–2432

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Shahhosseiny MH, Mostafavi PG, Fatemi SMR, Karimi E (2011) Clade identification of symbiotic zooxanthellae of dominant sclerectinian coral species of intertidal pools in Hengam Island. Afr J Biotechnol 10:1502–1506

    Google Scholar 

  • Shokri MR, Mohammadi M, Bargahi H (2019) Tourism carrying capacity assessment of diving sites in Kish Island. Free Trade Zone Kish Isl Kish Isl Iran: 245

  • Silverstein RN, Cunning R, Baker AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol 21:236–249

    Article  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • van Oppen MJH, Palstra FP, Piquet AM-T, Miller DJ (2001) Patterns of coral–dinoflagellate associations in Acropora: significance of local availability and physiology of symbiodinium strains and host–symbiont selectivity. Proc Roy Soc Lond Ser B: Biol Sci 268:1759–1767

  • Varasteh T, Shokri MR, Rajabi-Maham H, Behzadi S, Hume BCC (2018) Symbiodinium thermophilum symbionts in Porites harrisoni and Cyphastrea microphthalma in the northern Persian Gulf, Iran. J Mar Biol Assoc U K 98:2067–2073

  • Willis BL, Babcock RC, Harrison PL, Oliver JK, Wallace CC (1985) Patterns in the mass spawning of corals on the great barrier reef from 1981 to 1984. Proc 5th Int Coral Reef Sym 4:343–348

  • Ziegler M, Arif C, Burt JA, Dobretsov S, Roder C, LaJeunesse TC, Voolstra CR (2017) Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula. J Biogeogr 44:674–686

Download references

Acknowledgments

Authors wish to express their gratitude towards Dr. Mohammad Reza Shokri for his valuable comments on the manuscript. They also thank all reviewers for their critical comments on the earlier version of this manuscript. Appreciation is extended to Nasim Zarei Polgardani, Mohammad Ghaedzadeh, and Salman Ahrari for their generous and wholehearted support during the field samplings.

Availability of data and material

The datasets generated and/or analyzed during the current study are available from the first author on reasonable request.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Mahshid Oladi conceptualized and designed the research; Mahshid Oladi and Amir Ghazilou collected the samples; Faraham Ahmadzadeh provided tools and reagents; Mahshid Oladi and Soudabeh Rouzbehani generated and analyzed the data; Mahshid Oladi, Amir Ghazilou, and Faraham Ahmadzadeh interpreted the data; Mahshid Oladi wrote the original draft of the manuscript and all authors revised and approved the final draft.

Corresponding author

Correspondence to Mahshid Oladi.

Ethics declarations

Ethics approval

An ethical approval was not required as per national regulations.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oladi, M., Rouzbehani, S., Ahmadzadeh, F. et al. Dynamics of Dipsastraea pallida-symbiont association following bleaching events across the northern Persian Gulf and Gulf of Oman. Symbiosis 84, 141–149 (2021). https://doi.org/10.1007/s13199-021-00773-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00773-5

Keywords

Navigation