Log in

In-situ stress regime analysis and mechanical earth modeling of the southwestern sector of the Zagros folded belt, SW Iran: applications for acid fracturing in Ilam and Sarvak carbonate formations

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The studied oilfield in the Zagros folded belt accommodates hydrocarbons in the Cretaceous carbonate rocks of the Ilam and Sarvak Formations. The compressional tectonic regime of the study area is reflected in the presence of the NW-SE trending active Ch.1 and Ch.2 thrust fault-related anticlines and associated NW-SE trending reverse faults. The NW-SE trending reverse faults have formed a pop-up structure in the crest of the Ch.2 anticline dividing it into 3 sectors (A, B, and C) with different geomechanical characteristics. Sector B as the high-strain central part of the pop-up structure despite Sectors A and B as the low-strain parts (in the footwall of the reverse faults forming the pop-up structure), is considered a high-risk region for performing acid fracturing stimulation of the reservoirs. In seismic time slices at the Gachsaran level, ChF.1 and ChF.2 faults with NE-SW trend display sinistral and dextral displacement respectively, representing tear faults related to the basal thrust of the Zagros Fore-dip Fault. Horizontal and vertical stress magnitudes for the study area were derived from well-log data. The horizontal stress orientations were established from the dominant directions of the induced fractures and breakouts observed from the FMI log data and are in ~ 030° (NE-SW) and ~ 120° (NW-SE), respectively. Based on these determined horizontal stress orientations, the expected induced fracture propagation direction is ~ 030° and their opening would likely occur in the direction ~ 120°. Based on this deduced stress information, the optimal azimuthal perforation would be from 000° to 060° for acid-fracture stimulation of Ilam and Sarvak reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors do not have permission to disclose the data and materials from the studied wellbores.

Abbreviations

ChF.1:

Changuleh Fault.1

ChF.2:

Changuleh Fault.2

DTCO:

Compressional sonic well log

DTp:

P-wave sonic log

DTs:

S-wave sonic log

E :

Young’s modulus

FMI:

Fullbore Formation Micro-Imager

GPS:

Global positioning system

HZF:

High Zagros Fault

1D MEM:

One-dimensional Mechanical Earth Model

LOT:

Leak-off test

MDT:

Modular formation dynamics tester

MFF:

Mountain Front Fault

MZT:

Main Zagros Thrust

OBG:

Overburden gradient

Pp :

Pore pressure

Png :

hydrostatic gradient

Sv :

Vertical stress

SHmax :

maximum horizontal stress

Shmin :

Minimum horizontal principal stress

Δtml :

Travel time derived from mud line

Vs :

S wave velocity

Vp :

P wave velocity

XLOT:

Extended leak off test

Z:

Depth

ZFF :

Zagros Fore-dip Fault

α:

Biot’s constant

c:

Constant (0.0013)

Δt:

Travel time derived from the compressional sonic well log

Δt:

m travel time derived from shale

\({{\upepsilon }}_{y}\) :

Linear strain elongation components in “Y” axis direction

\({{\upepsilon }}_{x}\) :

Linear strain elongation components in “X” axis direction

g :

Acceleration due to gravity

ρ b :

Bulk density of the rocks

ρ sea :

Sea water density

ν :

Poisson’s ratio

z :

Depth

References

  • Aadnoy BS, Bell JS (1998) Classification of drilling-induced fractures and their relationship to in-situ stress directions. The Log Analyst 39(06)

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94:401–419. https://doi.org/10.1007/s00531-005-0481-4

    Article  CAS  Google Scholar 

  • Alavi M (1994) Tectonics of the zagros orogenic belt of iran: new data and interpretations

  • Allen MB, Armstrong HA (2008) Arabia–Eurasia collision and the forcing of mid- cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 265:52–58. https://doi.org/10.1016/j.palaeo.2008.04.021

    Article  Google Scholar 

  • Azizi H, Federico L (2018) J. Robert Stern, Sh. Hasannejad, and Y. Asahara

  • Ballato P, Uba CE, Landgraf A, Strecker MR, Sudo M, Stockli DF, Friedrich A, and S. H.Tabatabaei (2011) Arabia-Eurasia continental collision: insights from late tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Bulletin 123:106–131. https://doi.org/10.1130/B30091.1

    Article  Google Scholar 

  • Bell J, Gough D (1979) Northeast-Southwest compressive stress in Alberta evidence from oil wells. Earth Planet Sci Lett 45:475–482 : 10.1016/0012- 821X(79)90146-8

    Article  Google Scholar 

  • Berberian M (1995) Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241:193–224. https://doi.org/10.1016/0040-1951(94)00185-C

    Article  Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18(2):210–265. https://doi.org/10.1139/e81-019

    Article  Google Scholar 

  • Beydoun ZR, Hughes Clarke MW, Stoneley R (1992) Petroleum in the Zagros Basin: a late tertiary Foreland Basin Overprinted onto the outer edge of a vast hydrocarbon-rich paleozoic-mesozoic Passive-Margin Shelf, Foreland Basins and fold belts. Roger W. Macqueen, Dale A. Leckie

  • Binh NTT, Tokunaga T, Goulty NR, Son HP, Van Binh M (2011) Stress state in the Cuu Long and nam con Son basins, offshore Vietnam. Mar Pet Geol 28(5):973–979. https://doi.org/10.1016/j.marpetgeo.2011.01.007

    Article  Google Scholar 

  • Blanton T, Olson JE (1999) Stress magnitudes from logs: effects of tectonic strains and temperature. SPE Reservoir Eval Eng 2(01):62–68. https://doi.org/10.2118/54653-PA

    Article  CAS  Google Scholar 

  • Chatterjee S, Mukherjee S (2023) Review on drilling-induced fractures in drill cores

  • Comprehensive analysis of stress magnitude and orientations and natural fractures in complex structural regimes oil reservoir: Implications for tectonic and oil field development in the Zagros suture zone, Marine and Petroleum Geology 160: 106615. https://doi.org/10.1016/j.marpetgeo.2023.106615

  • Darin MH, Umhoefer PJ (2022) Diachronous initiation of Arabia–Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since middle Eocene time. Int Geol Rev 64(18):2653–2681. https://doi.org/10.1080/00206814.2022.2048272

    Article  Google Scholar 

  • Eaton BA (1975) The equation for geopressure prediction from well logs. Paper presented at the Fall Meeting of the Society of Petroleum Engineers of AIME, Dallas, Texas, September 28. SPE 5544. https://doi.org/10.2118/5544-MS

  • Emami H, jverges Vergés J, Nalpas T, Gillespie P, Sharp I, Karpuz R, Blanc EP, Goodarzi MGH (2010) Structure of the Mountain Front Flexure along the Anaran anticline in the Pusht-e Kuh Arc (NW Zagros, Iran): insights from sand box models. Geol Soc Lond Special Publications 330:155–178. https://doi.org/10.1144/SP330.9

    Article  Google Scholar 

  • Fakhari MD, Axen GJ, Horton BK, Hassanzadeh J, Amini A (2008) Revised age of proximal deposits in the Zagros foreland basin and implications for cenozoic evolution of the high Zagros. Tectonophysics 451:170–185

    Article  Google Scholar 

  • Falcon NL (1974) Southern Iran: Zagros Mountains. In: Spencer A (ed) Mesozoic- cenozoic orogenic belts, data for orogenic studies: Alpine-Himalayan orogens, Geological Society, 4th edn. Special, London, pp 199–211

    Google Scholar 

  • Ghanadian M, Faghih A, Abdollahie Fard I, Kusky T, Maleki M (2017)

  • Ghassemi MR, Nayeb S (2015) Active surface cracking in Aghajari formation of the Azar oil field, Zagros, western Iran. Mar Pet Geol 68:498–508. https://doi.org/10.1016/j.tecto.2007.11.064

    Article  Google Scholar 

  • Gowida A, Ibrahim AF, Elkatatny S, Ali A (2022) ACS Omega 7(16):13507–13519. https://doi.org/10.1021/acsomega.1c06596PMID: 35559186; PMCID: PMC9088765 New Empirical Correlations to Estimate the Least Principal Stresses Using Conventional Logging Data

  • Heidbach O, Rajabi M, Reiter K, Ziegler MO, and the WSM Team (2016). World Stress Map Database Release 2016. GFZ Data Services. https://doi.org/10.5880/WSM.2016.001

  • Heidbach O, Rajabi M, Cui X, Fuchs K, Müller B, Reinecker J, Reiter K, Tingay M, Wenzel F, **e F, Ziegler MO, Zoback M-L, Zoback MD (2018) Crustal stress pattern across scales. Tectonophysics 744:484–498. https://doi.org/10.1016/j.tecto.2018.07.007. The World Stress Map database release 2016

  • Homke S, Vergés J, Garcés M, Emami H, Karpuz R (2004) Magnetostratigraphy of Miocene–Pliocene Zagros Foreland deposits in the front of the Push-e kush arc (Lurestan Province, Iran). Earth Planet Sci Lett 225:397–410. https://doi.org/10.1016/j.epsl.2004.07.002

    Article  CAS  Google Scholar 

  • Horton B, Hassanzadeh J, Stockli D, Axen G, Gillis R, Guest B, Amini A, Fakhari M, Zamanzadeh S, Grove M (2008) Detrital zircon provenance of neoproterozoic to cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451:97–122. https://doi.org/10.1016/j.tecto.2007.11.063

    Article  CAS  Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1106. https://doi.org/10.1029/2000TC900018

    Article  Google Scholar 

  • Kirsch C (1898) Die theorie Der Elastizitat Und die bedurfnisse Der festigkeitslehre. Z des VereinesDeutscherIngenieure 42:797–807

    Google Scholar 

  • MacLeod JH, Roohi M (1972) Geological map of Mehran, Scale 1:100,000. National Iranian Oil Company

  • Mafakheri Bashmagh N, Lin W, Radwan AE (2024) and A. Khaksar Manshad

  • Mahmoudi Sh, Fernando C, Masoudi F, Mehrabi B, Mohajjel M (2011). Marine and Petroleum Geol 151:106089. https://doi.org/10.1016/j.marpetgeo.2022.106089

  • McGarr A, Gay N (1978) State of stress in the Earth’s crust. Annu Rev Earth Planet Sci 6:405–436. https://doi.org/10.1146/annurev.ea.06.050178.002201

    Article  Google Scholar 

  • McQuarrie N, Stock J, Verdel C, Wernicke B (2003) Cenozoic evolution of neotethys and implications for the causes of plate motions. Geophys Res Lett 30:2036. https://doi.org/10.1029/2003GL017992

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. J Asian Earth Sci 21(4):397–412. https://doi.org/10.1016/S1367-9120(02)00035-4

    Article  Google Scholar 

  • Molaghab A, Taherynia MH, FatemiAghda SM, Fahimifar A (2017) Determination of minimum and maximum stress profiles using wellbore failure evidences: a case study-a deep oil well in the southwest of Iran. J Petroleum Explor Prod Technol 7:707–715. https://doi.org/10.1007/s13202-017-0323-5

    Article  Google Scholar 

  • Nian T, Wang G, **ao C, Zhou L, Sun Y, Song H (2016) Determination of in-situ stress orientation and subsurface fracture analysis from image-core integration: an example from ultra-deep tight sandstone (BSJQK formation) in the Kelasu Belt, Tarim Basin. J Petrol Sci Eng 147:495–503. https://doi.org/10.1016/j.petrol.2016.09.020

    Article  CAS  Google Scholar 

  • Nouri F, Azizi H, Stern RJ, Asahara Y (2023) The Sanandaj-Sirjan Zone (W. Iran) was a jurassic passive continental margin: evidence from igneous rocks of the Songhor area. Lithos 440–44:107023. https://doi.org/10.1016/j.lithos.2023.107023

    Article  CAS  Google Scholar 

  • Plumb RA, Hickman SH (1985) Stress-induced borehole elongation: a comparison between the four-arm dip meter and the borehole televiewer in the auburn geothermal well. J Geophys Research: Solid Earth 90:5513–5521. https://doi.org/10.1029/JB090iB07p05513

    Article  Google Scholar 

  • Rajabi M, Sherkati S, Bohloli B, Tingay M (2010) Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: an example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran. Tectonophysics 492:192–200. https://doi.org/10.1016/j.tecto.2010.06.014

    Article  Google Scholar 

  • Sarkarinejad K, Pash RR, Motamedi H, Yazdani M (2018) Deformation and kinematic evolution of the subsurface structures: Zagros Foreland fold-and-thrust belt, northern Dezful Embayment, Iran. Int J Earth Sci (Geol Rundsch) 107:1287–1304. https://doi.org/10.1007/s00531-017-1532-3

    Article  CAS  Google Scholar 

  • Schmitt DR, Currie CA, Zhang L (2012) Crustal stress determination from boreholes and rock cores: fundamental principles. Tectonophysics 580:1–26. https://doi.org/10.1016/j.tecto.2012.08.029

    Article  Google Scholar 

  • Sepehr M, Cosgrove J (2004) Structural framework of the Zagros Fold–thrust belt, Iran. Mar Pet Geol 21:829–843. https://doi.org/10.1016/j.marpetgeo.2003.07.006

    Article  Google Scholar 

  • Stocklin J (1968) Structural history and tectonics of Iran: a review. Am Association Petroleum Geol Bull 52:1229–1258

    Google Scholar 

  • Tang Z, Kong X, Duan W, Gao J (2021) Wellbore breakout analysis and the maximum horizontal stress determination using the thermo-poroelasticity model. J Petrol Sci Eng 196:107674. https://doi.org/10.1016/j.petrol.2020.107674

    Article  CAS  Google Scholar 

  • Tavakoli-Shirazi S, Frizon de Lamotte D, Wrobel-Daveau JC, Ringenbach JC (2013a) PrePermian uplift and diffuse extensional deformation in the high Zagros Belt (Iran): integration in the geodynamic evolution of the arabian plate. Arab J Geoscience 6:2329–2342

    Article  Google Scholar 

  • The Late Jurassic Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone, northwest Iran: Mantle plume or active margin? Lithos. 308–309:364–380, https://doi.org/10.1016/j.lithos.2018.03.019

  • Tingay M, Reinecker J, Müller B (2008) Borehole breakout and drilling-induced fracture analysis from image logs. World Stress Map Project. 1–8

  • Twiss R, Moores E (1992) Structural geology. W.H. Freeman and Company, New York

    Google Scholar 

  • Zang A, Stephansson O, Heidbach O, Janouschkowetz S (2012) World stress map database as a resource for rock mechanics and rock engineering. Geotech Geol Eng 30:625–646. https://doi.org/10.1007/s10706-012-9505-6

    Article  Google Scholar 

  • Zarifi Z, Nilfouroushan F, Raeesi M (2014) Crustal stress map of Iran: insight from seismic and geodetic computations. Pure appl Geophys 171:1219–1236. https://doi.org/10.1007/s00024-013-0711-9

    Article  Google Scholar 

  • Zhang J, Fan Y, Liu W, Liu H, Xu B (2023) In situ stress evolution and Fault-Slip Tendency Assessment of an Underground Gas Storage Reservoir in the Turpan Basin (China): in situ stress measurements and coupled simulations. Rock Mech Rock Eng 56:8019–8039. https://doi.org/10.1007/s00603-023-03477-y

    Article  Google Scholar 

  • Zoback MD (2007) Reservoir geomechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Zoback M, Barton C, Brudy M, Castillo D, Finkbeiner T, Grollimund B, Moos D, Peska P, Ward C, Wiprut D (2003) Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Minings Sci 40:1049–1076

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the University of Tabriz for their support in conducting this research.

Funding

No funding was received to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

Fatemeh Mesbahi: Methodology, Software, Writing- Original draft preparation. Ali Kadkhodaie: Methodology, Reviewing David Wood: Methodology, Reviewing.

Corresponding author

Correspondence to Ali Kadkhodaie.

Ethics declarations

Consent for publication

All authors have consented to the publication of this manuscript and agree with its content.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesbahi, F., Kadkhodaie, A. & Wood, D.A. In-situ stress regime analysis and mechanical earth modeling of the southwestern sector of the Zagros folded belt, SW Iran: applications for acid fracturing in Ilam and Sarvak carbonate formations. Carbonates Evaporites 39, 70 (2024). https://doi.org/10.1007/s13146-024-00987-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-024-00987-w

Keywords

Navigation