Log in

Recent Progress of Cardiac MRI for Nuclear Medicine Professionals

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Recent technical innovation enables faster and more reliable cardiac magnetic resonance (CMR) imaging than before. Artificial intelligence is used in improving image resolution, fast scanning, and automated analysis of CMR. Fast CMR techniques such as compressed sensing technique enable fast cine, perfusion, and late gadolinium-enhanced imaging and improve patient throughput and widening CMR indications. CMR feature-tracking technique gives insight on diastolic function parameters of ventricles and atria with prognostic implications. Myocardial parametric map** became to be included in the routine CMR protocol. CMR fingerprinting enables simultaneous quantification of myocardial T1 and T2. These parameters may give information on myocardial alteration in the preclinical stages in various myocardial diseases. Four-dimensional flow imaging shows hemodynamic characteristics in or through the cardiovascular structures visually and gives quantitative values of vortex, kinetic energy, and wall-shear stress. In conclusion, CMR is an essential modality in the diagnosis of various cardiovascular diseases, especially myocardial diseases. Recent progress in CMR techniques promotes more widespread use of CMR in clinical practice. This review summarizes recent updates in CMR technologies and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AI:

Artificial intelligence

CMR:

Cardiac magnetic resonance imaging

CNN:

Convolutional neural network

CAD:

Coronary artery disease

DL:

Deep learning

ECV:

Extracellular volume fraction

HCM:

Hypertrophic cardiomyopathy

LV:

Left ventricular

MACE:

Major adverse cardiac events

MF:

Myocardial fibrosis

LGE:

Late gadolinium enhancement

PET:

Positron emission tomography

STEMI:

ST-elevation myocardial infarction

References

  1. Busse A, Rajagopal R, Yücel S, Beller E, Öner A, Streckenbach F, et al. Cardiac MRI-update 2020. Radiologe. 2020;60(Suppl 1):33–40. https://doi.org/10.1007/s00117-020-00687-1.

    Article  PubMed  Google Scholar 

  2. Daubert MA, Tailor T, James O, Shaw LJ, Douglas PS, Koweek L. Multimodality cardiac imaging in the 21st century: evolution, advances and future opportunities for innovation. Br J Radiol. 2021;94(1117):20200780. https://doi.org/10.1259/bjr.20200780.

    Article  PubMed  Google Scholar 

  3. Dodd JD, Leipsic J. Cardiovascular CT and MRI in 2019: review of key articles. Radiology. 2020;297(1):17–30. https://doi.org/10.1148/radiol.2020200605.

    Article  PubMed  Google Scholar 

  4. Chowdhary A, Garg P, Das A, Nazir MS, Plein S. Cardiovascular magnetic resonance imaging: emerging techniques and applications. Heart. 2021. https://doi.org/10.1136/heartjnl-2019-315669.

    Article  PubMed  Google Scholar 

  5. Eck BL, Flamm SD, Kwon DH, Tang WHW, Vasquez CP, Seiberlich N. Cardiac magnetic resonance fingerprinting: trends in technical development and potential clinical applications. Prog Nucl Magn Reson Spectrosc. 2021;122:11–22. https://doi.org/10.1016/j.pnmrs.2020.10.001.

    Article  CAS  PubMed  Google Scholar 

  6. Seraphim A, Knott KD, Augusto J, Bhuva AN, Manisty C, Moon JC. Quantitative cardiac MRI. J Magn Reson Imaging. 2020;51(3):693–711. https://doi.org/10.1002/jmri.26789.

    Article  PubMed  Google Scholar 

  7. Tang F, Bai C, Zhao XX, Yuan WF. Artificial intelligence and myocardial contrast enhancement pattern. Curr Cardiol Rep. 2020;22(8):77. https://doi.org/10.1007/s11886-020-01306-0.

    Article  PubMed  Google Scholar 

  8. Velasco C, Fletcher TJ, Botnar RM, Prieto C. Artificial intelligence in cardiac magnetic resonance fingerprinting. Front Cardiovasc Med. 2022;9:1009131. https://doi.org/10.3389/fcvm.2022.1009131.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nielles-Vallespin S, Scott A, Ferreira P, Khalique Z, Pennell D, Firmin D. Cardiac diffusion: technique and practical applications. J Magn Reson Imaging. 2020;52(2):348–68. https://doi.org/10.1002/jmri.26912.

    Article  PubMed  Google Scholar 

  10. Liu Y, Hamilton J, Jiang Y, Seiberlich N. Cardiac MRF using rosette trajectories for simultaneous myocardial T(1), T(2), and proton density fat fraction map**. Front Cardiovasc Med. 2022;9: 977603. https://doi.org/10.3389/fcvm.2022.977603.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Weingärtner S, Demirel ÖB, Gama F, Pierce I, Treibel TA, Schulz-Menger J, et al. Cardiac phase-resolved late gadolinium enhancement imaging. Front Cardiovasc Med. 2022;9: 917180. https://doi.org/10.3389/fcvm.2022.917180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong Z, Si G, Zhu X, Li C, Hua R, Teng J, et al. Diagnostic performance and safety of a novel ferumoxytol-enhanced coronary magnetic resonance angiography. Circ Cardiovasc Imaging. 2023;16(7):580–90. https://doi.org/10.1161/circimaging.123.015404.

    Article  PubMed  Google Scholar 

  13. Ayala C, Luo H, Godines K, Alghuraibawi W, Ahn S, Rehwald W, et al. Individually tailored spatial-spectral pulsed CEST MRI for ratiometric map** of myocardial energetic species at 3T. Magn Reson Med. 2023. https://doi.org/10.1002/mrm.29801.

    Article  PubMed  Google Scholar 

  14. Buechel RR, Ciancone D, Bakula A, von Felten E, Schmidt GA, Patriki D, et al. Long-term impact of myocardial inflammation on quantitative myocardial perfusion-a descriptive PET/MR myocarditis study. Eur J Nucl Med Mol Imaging. 2023. https://doi.org/10.1007/s00259-023-06314-0.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bakermans AJ, Boekholdt SM, de Vries DK, Reckman YJ, Farag ES, de Heer P, et al. Quantification of myocardial creatine and triglyceride content in the human heart: precision and accuracy of in vivo proton magnetic resonance spectroscopy. J Magn Reson Imaging. 2021. https://doi.org/10.1002/jmri.27531.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Abulaiti A, Zhang Q, Huang H, Ding S, Shayiti M, Wang S, et al. The value of the cardiac magnetic resonance intravoxel incoherent motion technique in evaluating microcirculatory dysfunction in hypertrophic cardiomyopathy. J Interv Cardiol. 2023;2023:4611602. https://doi.org/10.1155/2023/4611602.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lara Hernandez KA, Rienmüller T, Baumgartner D, Baumgartner C. Deep learning in spatiotemporal cardiac imaging: a review of methodologies and clinical usability. Comput Biol Med. 2021;130: 104200. https://doi.org/10.1016/j.compbiomed.2020.104200.

    Article  PubMed  Google Scholar 

  18. Alskaf E, Dutta U, Scannell CM, Chiribiri A. Deep learning applications in myocardial perfusion imaging, a systematic review and meta-analysis. Inform Med Unlocked. 2022;32: 101055. https://doi.org/10.1016/j.imu.2022.101055.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang ZC, Fan ZZ, Liu XY, Zhu MJ, Jiang SS, Tian S, et al. Deep learning for discrimination of hypertrophic cardiomyopathy and hypertensive heart disease on MRI native T1 Maps. J Magn Reson Imaging. 2023. https://doi.org/10.1002/jmri.28904.

    Article  PubMed  Google Scholar 

  20. Chen BH, Wu CW, An DA, Zhang JL, Zhang YH, Yu LZ, et al. A deep learning method for the automated assessment of paradoxical pulsation after myocardial infarction using multicenter cardiac MRI data. Eur Radiol. 2023. https://doi.org/10.1007/s00330-023-09807-6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim YC, Kim KR, Choe YH. Automatic myocardial segmentation in dynamic contrast enhanced perfusion MRI using Monte Carlo dropout in an encoder-decoder convolutional neural network. Comput Methods Programs Biomed. 2020;185: 105150. https://doi.org/10.1016/j.cmpb.2019.105150.

    Article  PubMed  Google Scholar 

  22. Kim YC, Kim KR, Choi K, Kim M, Chung Y, Choe YH. EVCMR: a tool for the quantitative evaluation and visualization of cardiac MRI data. Comput Biol Med. 2019;111: 103334. https://doi.org/10.1016/j.compbiomed.2019.103334.

    Article  PubMed  Google Scholar 

  23. Xu B, Kocyigit D, Grimm R, Griffin BP, Cheng F. Applications of artificial intelligence in multimodality cardiovascular imaging: a state-of-the-art review. Prog Cardiovasc Dis. 2020;63(3):367–76. https://doi.org/10.1016/j.pcad.2020.03.003.

    Article  PubMed  Google Scholar 

  24. Fan L, Shen D, Haji-Valizadeh H, Naresh NK, Carr JC, Freed BH, et al. Rapid dealiasing of undersampled, non-Cartesian cardiac perfusion images using U-net. NMR Biomed. 2020;33(5): e4239. https://doi.org/10.1002/nbm.4239.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Unal HB, Beaulieu T, Rivero LZ, Dharmakumar R, Sharif B. Retrospective detection and suppression of dark-rim artifacts in first-pass perfusion cardiac MRI enabled by deep learning. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:4079–85. https://doi.org/10.1109/embc46164.2021.9630270.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yan X, Luo Y, Chen X, Chen EZ, Liu Q, Zou L, et al. From compressed-sensing to deep learning MR: comparative biventricular cardiac function analysis in a patient cohort. J Magn Reson Imaging. 2023. https://doi.org/10.1002/jmri.28899.

    Article  PubMed  Google Scholar 

  27. Küstner T, Armanious K, Yang J, Yang B, Schick F, Gatidis S. Retrospective correction of motion-affected MR images using deep learning frameworks. Magn Reson Med. 2019;82(4):1527–40. https://doi.org/10.1002/mrm.27783.

    Article  PubMed  Google Scholar 

  28. Fahmy AS, Rowin EJ, Chan RH, Manning WJ, Maron MS, Nezafat R. Improved quantification of myocardium scar in late gadolinium enhancement images: deep learning based image fusion approach. J Magn Reson Imaging. 2021. https://doi.org/10.1002/jmri.27555.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zabihollahy F, Rajan S, Ukwatta E. Machine learning-based segmentation of left ventricular myocardial fibrosis from magnetic resonance imaging. Curr Cardiol Rep. 2020;22(8):65. https://doi.org/10.1007/s11886-020-01321-1.

    Article  PubMed  Google Scholar 

  30. Gao Y, Zhou Z, Zhang B, Guo S, Bo K, Li S, et al. Deep learning-based prognostic model using non-enhanced cardiac cine MRI for outcome prediction in patients with heart failure. Eur Radiol. 2023. https://doi.org/10.1007/s00330-023-09785-9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moustafa A, Khan MS, Alsamman MA, Jamal F, Atalay MK. Prognostic significance of T1 map** parameters in heart failure with preserved ejection fraction: a systematic review. Heart Fail Rev. 2021;26(6):1325–31. https://doi.org/10.1007/s10741-020-09958-4.

    Article  PubMed  Google Scholar 

  32. Pan C, Zhang Z, Luo L, Wu W, Jia T, Lu L, et al. Cardiac T1 and T2 map** showed myocardial involvement in recovered COVID-19 patients initially considered devoid of cardiac damage. J Magn Reson Imaging. 2021. https://doi.org/10.1002/jmri.27534.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pan JA, Kerwin MJ, Salerno M. Native T1 Map**, extracellular volume map**, and late gadolinium enhancement in cardiac amyloidosis: a meta-analysis. JACC Cardiovasc Imaging. 2020;13(6):1299–310. https://doi.org/10.1016/j.jcmg.2020.03.010.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wheen P, Armstrong R, Daly CA. Recent advances in T1 and T2 map** in the assessment of fulminant myocarditis by cardiac magnetic resonance. Curr Cardiol Rep. 2020;22(7):47. https://doi.org/10.1007/s11886-020-01295-0.

    Article  CAS  PubMed  Google Scholar 

  35. Yang MX, He Y, Ma M, Zhao Q, Xu HY, ** and its association with left ventricular remodeling. Eur J Radiol. 2021;137: 109590. https://doi.org/10.1016/j.ejrad.2021.109590.

    Article  PubMed  Google Scholar 

  36. Yue P, Xu Z, Wan K, Tan Y, Xu Y, ** by cardiovascular magnetic resonance imaging in cardiac tumors. J Cardiovasc Magn Reson. 2023;25(1):37. https://doi.org/10.1186/s12968-023-00938-9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roller FC, Fuest S, Meyer M, Harth S, Gündüz D, Bauer P, et al. Assessment of cardiac involvement in Fabry Disease (FD) with native T1 map**. Rofo. 2019;191(10):932–9. https://doi.org/10.1055/a-0836-2723.

    Article  PubMed  Google Scholar 

  38. Krittayaphong R, Zhang S, Saiviroonporn P, Viprakasit V, Tanapibunpon P, Komoltri C, et al. Detection of cardiac iron overload with native magnetic resonance T1 and T2 map** in patients with thalassemia. Int J Cardiol. 2017;248:421–6. https://doi.org/10.1016/j.ijcard.2017.06.100.

    Article  PubMed  Google Scholar 

  39. Ferreira VM, Piechnik SK. CMR Parametric map** as a tool for myocardial tissue characterization. Korean Circ J. 2020;50(8):658–76. https://doi.org/10.4070/kcj.2020.0157.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shin SH, Kim SM, Cho SJ, Choe YH. Longitudinal changes in the myocardial T1 relaxation time, extracellular volume fraction, and left ventricular function in asymptomatic men. J Cardiovasc Dev Dis. 2023;10(6). https://doi.org/10.3390/jcdd10060252.

  41. Warnica W, Al-Arnawoot A, Stanimirovic A, Thavendiranathan P, Wald RM, Pakkal M, et al. Clinical Impact of Cardiac MRI T1 and T2 Parametric map** in patients with suspected cardiomyopathy. Radiology. 2022;305(2):319–26. https://doi.org/10.1148/radiol.220067.

    Article  PubMed  Google Scholar 

  42. Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance map** of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017;19(1):75. https://doi.org/10.1186/s12968-017-0389-8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol. 2018;72(24):3158–76. https://doi.org/10.1016/j.jacc.2018.09.072.

    Article  PubMed  Google Scholar 

  44. Kalapos A, Szabó L, Dohy Z, Kiss M, Merkely B, Gyires-Tóth B, et al. Automated T1 and T2 map** segmentation on cardiovascular magnetic resonance imaging using deep learning. Front Cardiovasc Med. 2023;10:1147581. https://doi.org/10.3389/fcvm.2023.1147581.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kim YC, Kim KR, Lee H, Choe YH. Fast calculation software for modified Look-Locker inversion recovery (MOLLI) T1 map**. BMC Med Imaging. 2021;21(1):26. https://doi.org/10.1186/s12880-021-00558-8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Qi H, Lv Z, Hu J, Xu J, Botnar R, Prieto C, et al. Accelerated 3D free-breathing high-resolution myocardial T(1ρ) map** at 3 Tesla. Magn Reson Med. 2022;88(6):2520–31. https://doi.org/10.1002/mrm.29417.

    Article  PubMed  Google Scholar 

  47. Si D, Kong X, Guo R, Cheng L, Ning Z, Chen Z, et al. Single breath-hold three-dimensional whole-heart T(2) map** with low-rank plus sparse reconstruction. NMR Biomed. 2023;36(8): e4924. https://doi.org/10.1002/nbm.4924.

    Article  PubMed  Google Scholar 

  48. Bustin A, Witschey WRT, van Heeswijk RB, Cochet H, Stuber M. Magnetic resonance myocardial T1ρ map** : technical overview, challenges, emerging developments, and clinical applications. J Cardiovasc Magn Reson. 2023;25(1):34. https://doi.org/10.1186/s12968-023-00940-1.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Piechnik SK, Neubauer S, Ferreira VM. State-of-the-art review: stress T1 map**-technical considerations, pitfalls and emerging clinical applications. MAGMA. 2018;31(1):131–41. https://doi.org/10.1007/s10334-017-0649-5.

    Article  PubMed  Google Scholar 

  50. Liu A, Wijesurendra RS, Francis JM, Robson MD, Neubauer S, Piechnik SK, et al. Adenosine stress and rest T1 map** can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents. JACC Cardiovasc Imaging. 2016;9(1):27–36. https://doi.org/10.1016/j.jcmg.2015.08.018.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ma P, Liu J, Hu Y, Zhou X, Shang Y, Wang J. Histologic validation of stress cardiac magnetic resonance T1-map** techniques for detection of coronary microvascular dysfunction in rabbits. Int J Cardiol. 2022;347:76–82. https://doi.org/10.1016/j.ijcard.2021.10.137.

    Article  PubMed  Google Scholar 

  52. Ma P, Liu J, Hu Y, Chen L, Liang H, Zhou X, et al. Stress CMR T1-map** technique for assessment of coronary microvascular dysfunction in a rabbit model of type II diabetes mellitus: Validation against histopathologic changes. Front Cardiovasc Med. 2022;9:1066332. https://doi.org/10.3389/fcvm.2022.1066332.

    Article  CAS  PubMed  Google Scholar 

  53. Halfmann MC, Müller L, von Henning U, Kloeckner R, Schöler T, Kreitner KF, et al. Cardiac MRI-based right-to-left ventricular blood pool T2 relaxation times ratio correlates with exercise capacity in patients with chronic heart failure. J Cardiovasc Magn Reson. 2023;25(1):33. https://doi.org/10.1186/s12968-023-00943-y.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rizk J. 4D flow MRI applications in congenital heart disease. Eur Radiol. 2021;31(2):1160–74. https://doi.org/10.1007/s00330-020-07210-z.

    Article  PubMed  Google Scholar 

  55. Jamalidinan F, Hassanabad AF, François CJ, Garcia J. Four-dimensional-flow magnetic resonance imaging of the aortic valve and thoracic aorta. Radiol Clin North Am. 2020;58(4):753–63. https://doi.org/10.1016/j.rcl.2020.02.008.

    Article  PubMed  Google Scholar 

  56. Corrias G, Cocco D, Suri JS, Meloni L, Cademartiri F, Saba L. Heart applications of 4D flow. Cardiovasc Diagn Ther. 2020;10(4):1140–9. https://doi.org/10.21037/cdt.2020.02.08.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Juffermans JF, Minderhoud SCS, Wittgren J, Kilburg A, Ese A, Fidock B, et al. Multicenter consistency assessment of valvular flow quantification with automated valve tracking in 4D flow CMR. JACC Cardiovasc Imaging. 2021. https://doi.org/10.1016/j.jcmg.2020.12.014.

    Article  PubMed  Google Scholar 

  58. Garcia J, Barker AJ, Markl M. The role of imaging of flow patterns by 4D flow MRI in aortic stenosis. JACC Cardiovasc Imaging. 2019;12(2):252–66. https://doi.org/10.1016/j.jcmg.2018.10.034.

    Article  PubMed  Google Scholar 

  59. Warmerdam E, Krings GJ, Leiner T, Grotenhuis HB. Three-dimensional and four-dimensional flow assessment in congenital heart disease. Heart. 2020;106(6):421–6. https://doi.org/10.1136/heartjnl-2019-315797.

    Article  CAS  PubMed  Google Scholar 

  60. Soulat G, Alattar Y, Ladouceur M, Craiem D, Pascaner A, Gencer U, et al. Discordance between 2D and 4D flow in the assessment of pulmonary regurgitation severity: a right ventricular remodeling follow-up study. Eur Radiol. 2023;33(8):5455–64. https://doi.org/10.1007/s00330-023-09502-6.

    Article  PubMed  Google Scholar 

  61. Bissell MM, Raimondi F, Ait Ali L, Allen BD, Barker AJ, Bolger A, et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update. J Cardiovasc Magn Reson. 2023;25(1):40. https://doi.org/10.1186/s12968-023-00942-z.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Firmin DN, Pennell DJ. Diffusion tensor cardiovascular magnetic resonance imaging: a clinical perspective. JACC Cardiovasc Imaging. 2020;13(5):1235–55. https://doi.org/10.1016/j.jcmg.2019.07.016.

    Article  PubMed  Google Scholar 

  63. Das A, Kelly C, Teh I, Stoeck CT, Kozerke S, Chowdhary A et al. Acute microstructural changes after ST-segment elevation myocardial infarction assessed with diffusion tensor imaging. Radiology. 2021:203208. https://doi.org/10.1148/radiol.2021203208.

  64. Ponsiglione A, Stanzione A, Cuocolo R, Ascione R, Gambardella M, De Giorgi M, et al. Cardiac CT and MRI radiomics: systematic review of the literature and radiomics quality score assessment. Eur Radiol. 2022;32(4):2629–38. https://doi.org/10.1007/s00330-021-08375-x.

    Article  PubMed  Google Scholar 

  65. Ma Q, Ma Y, Wang X, Li S, Yu T, Duan W, et al. A radiomic nomogram for prediction of major adverse cardiac events in ST-segment elevation myocardial infarction. Eur Radiol. 2021;31(2):1140–50. https://doi.org/10.1007/s00330-020-07176-y.

    Article  PubMed  Google Scholar 

  66. Wang J, Bravo L, Zhang J, Liu W, Wan K, Sun J, et al. Radiomics analysis derived from LGE-MRI predict sudden cardiac death in participants with hypertrophic cardiomyopathy. Front Cardiovasc Med. 2021;8: 766287. https://doi.org/10.3389/fcvm.2021.766287.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Prakken NHJ, Besson FL, Borra RJH, Büther F, Buechel RR, Catana C, et al. PET/MRI in practice: a clinical centre survey endorsed by the European Association of Nuclear Medicine (EANM) and the EANM Forschungs GmbH (EARL). Eur J Nucl Med Mol Imaging. 2023;50(10):2927–34. https://doi.org/10.1007/s00259-023-06308-y.

    Article  CAS  PubMed  Google Scholar 

  68. Rajiah PS, Kalisz K, Broncano J, Goerne H, Collins JD, François CJ, et al. Myocardial strain evaluation with cardiovascular MRI: physics, principles, and clinical applications. Radiographics. 2022;42(4):968–90. https://doi.org/10.1148/rg.210174.

    Article  PubMed  Google Scholar 

  69. Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging. 2019;20(6):605–19. https://doi.org/10.1093/ehjci/jez041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Y, Sun C, Ghadimi S, Auger DC, Croisille P, Viallon M, et al. StrainNet: improved myocardial strain analysis of cine MRI by deep learning from DENSE. Radiol Cardiothorac Imaging. 2023;5(3): e220196. https://doi.org/10.1148/ryct.220196.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang TKM, Kwon DH, Griffin BP, Flamm SD, Popović ZB. Defining the reference range for left ventricular strain in healthy patients by cardiac MRI measurement techniques: systematic review and meta-analysis. AJR Am J Roentgenol. 2020. https://doi.org/10.2214/ajr.20.24264.

    Article  PubMed  Google Scholar 

  72. Oka S, Kai T, Hoshino K, Watanabe K, Nakamura J, Abe M, et al. Effects of empagliflozin in different phases of diabetes mellitus-related cardiomyopathy: a prospective observational study. BMC Cardiovasc Disord. 2021;21(1):217. https://doi.org/10.1186/s12872-021-02024-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Erley J, Genovese D, Tapaskar N, Alvi N, Rashedi N, Besser SA, et al. Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement. J Cardiovasc Magn Reson. 2019;21(1):46. https://doi.org/10.1186/s12968-019-0559-y.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chen Y, Qian W, Liu W, Zhu Y, Zhou X, Xu Y, et al. Feasibility of single-shot compressed sensing cine imaging for analysis of left ventricular function and strain in cardiac MRI. Clin Radiol. 2021. https://doi.org/10.1016/j.crad.2020.12.024.

    Article  PubMed  Google Scholar 

  75. Tian D, Sun Y, Guo JJ, Zhao SH, Lu HF, Chen YY et al. 3.0 T unenhanced Dixon water-fat separation whole-heart coronary magnetic resonance angiography: compressed-sensing sensitivity encoding imaging versus conventional 2D sensitivity encoding imaging. Int J Cardiovasc Imaging. 2023. https://doi.org/10.1007/s10554-023-02878-y.

  76. Varga-Szemes A, Halfmann M, Schoepf UJ, ** N, Kilburg A, Dargis DM, et al. Highly accelerated compressed-sensing 4D flow for intracardiac flow assessment. J Magn Reson Imaging. 2023;58(2):496–507. https://doi.org/10.1002/jmri.28484.

    Article  PubMed  Google Scholar 

  77. Jenista ER, Wendell DC, Azevedo CF, Klem I, Judd RM, Kim RJ, et al. Revisiting how we perform late gadolinium enhancement CMR: insights gleaned over 25 years of clinical practice. J Cardiovasc Magn Reson. 2023;25(1):18. https://doi.org/10.1186/s12968-023-00925-0.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Si D, Wu Y, **ao J, Qin X, Guo R, Liu B, et al. Three-dimensional high-resolution dark-blood late gadolinium enhancement imaging for improved atrial scar evaluation. Radiology. 2023;307(5): e222032. https://doi.org/10.1148/radiol.222032.

    Article  PubMed  Google Scholar 

  79. Ohta Y, Tateishi E, Morita Y, Nishii T, Kotoku A, Horinouchi H, et al. Optimization of null point in Look-Locker images for myocardial late gadolinium enhancement imaging using deep learning and a smartphone. Eur Radiol. 2023;33(7):4688–97. https://doi.org/10.1007/s00330-023-09465-8.

    Article  CAS  PubMed  Google Scholar 

  80. Kato S, Azuma M, Nakayama N, Fukui K, Ito M, Saito N, et al. Diagnostic accuracy of whole heart coronary magnetic resonance angiography: a systematic review and meta-analysis. J Cardiovasc Magn Reson. 2023;25(1):36. https://doi.org/10.1186/s12968-023-00949-6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yue X, Yang L, Wang R, Chan Q, Yang Y, Wu X, et al. The diagnostic value of multiparameter cardiovascular magnetic resonance for early detection of light-chain amyloidosis from hypertrophic cardiomyopathy patients. Front Cardiovasc Med. 2022;9:1017097. https://doi.org/10.3389/fcvm.2022.1017097.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Agibetov A, Kammerlander A, Duca F, Nitsche C, Koschutnik M, Donà C et al. Convolutional neural networks for fully automated diagnosis of cardiac amyloidosis by cardiac magnetic resonance imaging. J Pers Med. 2021;11(12). https://doi.org/10.3390/jpm11121268.

  83. Blissett S, Chocron Y, Kovacina B, Afilalo J. Diagnostic and prognostic value of cardiac magnetic resonance in acute myocarditis: a systematic review and meta-analysis. Int J Cardiovasc Imaging. 2019;35(12):2221–9. https://doi.org/10.1007/s10554-019-01674-x.

    Article  PubMed  Google Scholar 

  84. Baessler B, Luecke C, Lurz J, Klingel K, Das A, von Roeder M, et al. Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure. Radiology. 2019;292(3):608–17. https://doi.org/10.1148/radiol.2019190101.

    Article  PubMed  Google Scholar 

  85. Ojha V, Verma M, Pandey NN, Mani A, Malhi AS, Kumar S, et al. Cardiac magnetic resonance imaging in coronavirus disease 2019 (COVID-19): A systematic review of cardiac magnetic resonance imaging findings in 199 patients. J Thorac Imaging. 2021;36(2):73–83. https://doi.org/10.1097/rti.0000000000000574.

    Article  PubMed  Google Scholar 

  86. Vago H, Szabo L, Szabo Z, Ulakcsai Z, Szogi E, Budai G, et al. Immunological response and temporal associations in myocarditis after COVID-19 vaccination using cardiac magnetic resonance imaging: an amplified T-cell response at the heart of it? Front Cardiovasc Med. 2022;9: 961031. https://doi.org/10.3389/fcvm.2022.961031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cavalcante JL, Shaw KE, Gössl M. Cardiac magnetic resonance imaging midterm follow up of COVID-19 vaccine-associated myocarditis. JACC Cardiovasc Imaging. 2022;15(10):1821–4. https://doi.org/10.1016/j.jcmg.2022.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhang J, Li Y, Xu Q, Xu B, Wang H. Cardiac magnetic resonance imaging for diagnosis of cardiac sarcoidosis: a meta-analysis. Can Respir J. 2018;2018:7457369. https://doi.org/10.1155/2018/7457369.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cheung E, Ahmad S, Aitken M, Chan R, Iwanochko RM, Balter M, et al. Combined simultaneous FDG-PET/MRI with T1 and T2 map** as an imaging biomarker for the diagnosis and prognosis of suspected cardiac sarcoidosis. Eur J Hybrid Imaging. 2021;5(1):24. https://doi.org/10.1186/s41824-021-00119-w.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Aitken M, Chan MV, Urzua Fresno C, Farrell A, Islam N, McInnes MDF, et al. Diagnostic accuracy of cardiac MRI versus FDG PET for cardiac sarcoidosis: a systematic review and meta-analysis. Radiology. 2022;304(3):566–79. https://doi.org/10.1148/radiol.213170.

    Article  PubMed  Google Scholar 

  91. **ao Z, Zhong J, Zhong L, Dai S, Lu W, Song L, et al. The prognostic value of myocardial salvage index by cardiac magnetic resonance in ST-segment elevation myocardial infarction patients: a systematic review and meta-analysis. Eur Radiol. 2023. https://doi.org/10.1007/s00330-023-09739-1.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bodi V, Gavara J, Lopez-Lereu MP, Monmeneu JV, de Dios E, Perez-Sole N, et al. Impact of persistent microvascular obstruction late after STEMI on adverse LV remodeling: a CMR study. JACC Cardiovasc Imaging. 2023;16(7):919–30. https://doi.org/10.1016/j.jcmg.2023.01.021.

    Article  PubMed  Google Scholar 

  93. Smulders MW, Van Assche LMR, Bekkers S, Nijveldt R, Beijnink CWH, Kim HW, et al. Epicardial surface area of infarction: a stable surrogate of microvascular obstruction in acute myocardial infarction. Circ Cardiovasc Imaging. 2021;14(2): e010918. https://doi.org/10.1161/circimaging.120.010918.

    Article  PubMed  Google Scholar 

  94. Cha MJ, Lee JH, Jung HN, Kim Y, Choe YH, Kim SM. Cardiac magnetic resonance-tissue tracking for the early prediction of adverse left ventricular remodeling after ST-segment elevation myocardial infarction. Int J Cardiovasc Imaging. 2019;35(11):2095–102. https://doi.org/10.1007/s10554-019-01659-w.

    Article  PubMed  Google Scholar 

  95. Leung SW, Charnigo RJ, Ratajczak T, Abo-Aly M, Shokri E, Abdel-Latif A, et al. End-systolic circumferential strain derived from cardiac magnetic resonance feature-tracking as a predictor of functional recovery in patients with ST-segment elevation myocardial infarction. J Magn Reson Imaging. 2021;54(6):2000–3. https://doi.org/10.1002/jmri.27772.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cui J, Zhao Y, Qian G, Yue X, Luo C, Li T. Cardiac magnetic resonance for the early prediction of reverse left ventricular remodeling in patients with ST-segment elevation myocardial infarction. Eur Radiol. 2023. https://doi.org/10.1007/s00330-023-09907-3.

    Article  PubMed  Google Scholar 

  97. Wang J, Meng Y, Han S, Hu C, Lu Y, Wu P, et al. Predictive value of total ischaemic time and T1 map** after emergency percutaneous coronary intervention in acute ST-segment elevation myocardial infarction. Clin Radiol. 2023. https://doi.org/10.1016/j.crad.2023.06.010.

    Article  PubMed  Google Scholar 

  98. Bergamaschi L, Foà A, Paolisso P, Renzulli M, Angeli F, Fabrizio M, et al. Prognostic role of early cardiac magnetic resonance in myocardial infarction with nonobstructive coronary arteries. JACC Cardiovasc Imaging. 2023. https://doi.org/10.1016/j.jcmg.2023.05.016.

    Article  PubMed  Google Scholar 

  99. Li XM, Jiang L, Min CY, Yan WF, Shen MT, Liu XJ, et al. Myocardial perfusion imaging by cardiovascular magnetic resonance: research progress and current implementation. Curr Probl Cardiol. 2023;48(6): 101665. https://doi.org/10.1016/j.cpcardiol.2023.101665.

    Article  PubMed  Google Scholar 

  100. Rahman H, Scannell CM, Demir OM, Ryan M, McConkey H, Ellis H, et al. High-resolution cardiac magnetic resonance imaging techniques for the identification of coronary microvascular dysfunction. JACC Cardiovasc Imaging. 2021;14(5):978–86. https://doi.org/10.1016/j.jcmg.2020.10.015.

    Article  PubMed  Google Scholar 

  101. Jogiya R, Kozerke S, Morton G, De Silva K, Redwood S, Perera D, et al. Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol. 2012;60(8):756–65. https://doi.org/10.1016/j.jacc.2012.02.075.

    Article  PubMed  Google Scholar 

  102. Károlyi M, Gotschy A, Polacin M, Plein S, Paetsch I, Jahnke C, et al. Diagnostic performance of 3D cardiac magnetic resonance perfusion in elderly patients for the detection of coronary artery disease as compared to fractional flow reserve. Eur Radiol. 2023;33(1):339–47. https://doi.org/10.1007/s00330-022-09040-7.

    Article  PubMed  Google Scholar 

  103. Arai AE, Schulz-Menger J, Shah DJ, Han Y, Bandettini WP, Abraham A, et al. Stress perfusion cardiac magnetic resonance vs SPECT imaging for detection of coronary artery disease. J Am Coll Cardiol. 2023;82(19):1828–38. https://doi.org/10.1016/j.jacc.2023.08.046.

    Article  PubMed  Google Scholar 

  104. Wang S, Patel H, Miller T, Ameyaw K, Miller P, Narang A, et al. Relation of myocardial perfusion reserve and left ventricular ejection fraction in ischemic and nonischemic cardiomyopathy. Am J Cardiol. 2022;174:143–50. https://doi.org/10.1016/j.amjcard.2022.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nagel E, Carerj ML, Arendt CT, Puntmann VO. After ISCHEMIA: is cardiac MRI a reliable gatekeeper for invasive angiography and myocardial revascularization? Herz. 2020;45(5):446–52. https://doi.org/10.1007/s00059-020-04936-w.

    Article  CAS  PubMed  Google Scholar 

  106. Nagel E, Greenwood JP, McCann GP, Bettencourt N, Shah AM, Hussain ST, et al. Magnetic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med. 2019;380(25):2418–28. https://doi.org/10.1056/NEJMoa1716734.

    Article  PubMed  Google Scholar 

  107. Miller CD, Mahler SA, Snavely AC, Raman SV, Caterino JM, Clark CL, et al. Cardiac magnetic resonance imaging versus invasive-based strategies in patients with chest pain and detectable to mildly elevated serum troponin: a randomized clinical trial. Circ Cardiovasc Imaging. 2023;16(6): e015063. https://doi.org/10.1161/circimaging.122.015063.

    Article  PubMed  Google Scholar 

  108. Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, et al. 2020 AHA/ACC Guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020;142(25):e558–631. https://doi.org/10.1161/cir.0000000000000937.

    Article  PubMed  Google Scholar 

  109. Freitas P, Ferreira AM, Arteaga-Fernández E, de Oliveira AM, Mesquita J, Abecasis J, et al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J Cardiovasc Magn Reson. 2019;21(1):50. https://doi.org/10.1186/s12968-019-0561-4.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Suwa K, Sato R, Iguchi K, Maekawa Y. Four-dimensional flow cardiac MRI for hemodynamic assessment of alcohol septal ablation for hypertrophic obstructive cardiomyopathy with multiple obstructions. Radiology: Cardiothoracic Imaging. 2023;5(5):230074. https://doi.org/10.1148/ryct.230074.

  111. Becker MAJ, van der Lingen ACJ, Cornel JH, van de Ven PM, van Rossum AC, Allaart CP, et al. Septal midwall late gadolinium enhancement in ischemic cardiomyopathy and nonischemic dilated cardiomyopathy-characteristics and prognosis. Am J Cardiol. 2023;201:294–301. https://doi.org/10.1016/j.amjcard.2023.06.042.

    Article  CAS  PubMed  Google Scholar 

  112. Yuan Y, Sun J, ** D, Zhao S. Quantitative left ventricular mechanical dyssynchrony by magnetic resonance imaging predicts the prognosis of dilated cardiomyopathy. Eur J Radiol. 2023;164: 110847. https://doi.org/10.1016/j.ejrad.2023.110847.

    Article  PubMed  Google Scholar 

  113. Liu T, Zhou Z, Bo K, Gao Y, Wang H, Wang R, et al. Association between left ventricular global function index and outcomes in patients with dilated cardiomyopathy. Front Cardiovasc Med. 2021;8: 751907. https://doi.org/10.3389/fcvm.2021.751907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shen MT, Li Y, Guo YK, Gao Y, Jiang L, Shi R, et al. The impact of hypertension on left ventricular function and remodeling in non-ischemic dilated cardiomyopathy patients: A 3.0 T MRI Study. J Magn Reson Imaging. 2023;58(1):159–71. https://doi.org/10.1002/jmri.28475.

    Article  PubMed  Google Scholar 

  115. Seraphim A, Westwood M, Bhuva AN, Crake T, Moon JC, Menezes LJ, et al. Advanced imaging modalities to monitor for cardiotoxicity. Curr Treat Options Oncol. 2019;20(9):73. https://doi.org/10.1007/s11864-019-0672-z.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Galán-Arriola C, Lobo M, Vílchez-Tschischke JP, López GJ, de Molina-Iracheta A, Pérez-Martínez C, et al. Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol. 2019;73(7):779–91. https://doi.org/10.1016/j.jacc.2018.11.046.

    Article  PubMed  Google Scholar 

  117. Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64. https://doi.org/10.1016/j.jacc.2018.02.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mabudian L, Jordan JH, Bottinor W, Hundley WG. Cardiac MRI assessment of anthracycline-induced cardiotoxicity. Front Cardiovasc Med. 2022;9: 903719. https://doi.org/10.3389/fcvm.2022.903719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jang SY, Kim J, Kim YS, Chang YA, Jung W, Kim HO et al. Clinical features and test indications of 11,087 patients undergoing cardiac magnetic resonance imaging during a decade in a tertiary referral center: a retrospective observational study. Precis Future Med. 2023;7(2):62–73. https://doi.org/10.23838/pfm.2023.00023.

  120. Kozor R, Walker S, Parkinson B, Younger J, Hamilton-Craig C, Selvanayagam JB, et al. Cost-effectiveness of cardiovascular magnetic resonance in diagnosing coronary artery disease in the Australian health care system. Heart Lung Circ. 2021;30(3):380–7. https://doi.org/10.1016/j.hlc.2020.07.008.

    Article  PubMed  Google Scholar 

  121. Kwong RY, Ge Y, Steel K, Bingham S, Abdullah S, Fujikura K, et al. Cardiac magnetic resonance stress perfusion imaging for evaluation of patients with chest pain. J Am Coll Cardiol. 2019;74(14):1741–55. https://doi.org/10.1016/j.jacc.2019.07.074.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pontone G, Andreini D, Guaricci AI, Rota C, Guglielmo M, Mushtaq S et al. The STRATEGY Study (Stress Cardiac Magnetic Resonance Versus Computed Tomography Coronary Angiography for the Management of Symptomatic Revascularized Patients): resources and outcomes impact. Circ Cardiovasc Imaging. 2016;9(10). https://doi.org/10.1161/CIRCIMAGING.116.005171.

  123. Hegde VA, Biederman RW, Mikolich JR. Cardiovascular magnetic resonance imaging-incremental value in a series of 361 patients demonstrating cost savings and clinical benefits: an outcome-based study. Clin Med Insights Cardiol. 2017;11:1179546817710026. https://doi.org/10.1177/1179546817710026.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yeon Hyeon Choe and Sung Mok Kim; writing—original draft: Yeon Hyeon Choe; writing—review and editing: Yeon Hyeon Choe and Sung Mok Kim.

Corresponding author

Correspondence to Yeon Hyeon Choe.

Ethics declarations

Conflict of Interest

Yeon Hyeon Choe and Sung Mok Kim declare that they have no conflict of interest.

Ethics Approval

All content in this editorial was in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to Participate

As an editorial article obtaining informed consent was waived.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choe, Y.H., Kim, S.M. Recent Progress of Cardiac MRI for Nuclear Medicine Professionals. Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s13139-024-00850-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13139-024-00850-9

Keywords

Navigation