Log in

Distribution of phytoplankton in the East China Sea and the southern Yellow Sea in spring in relation to environmental variables and dimethylsulfide compounds

  • Articles
  • Dynamics of ecosystems and anthropogenic drivers in the Yellow Sea Large Marine Ecosystem
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The coastal ecosystems are highly sensitive to climate change and are usually influenced by variations in phytoplankton communities and water physiochemical factors. In the present study, the phytoplankton community, chlorophyll a (Chl a) and their relationships with environmental variables and dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) were investigated in spring 2017 (March 24 to April 16) in the East China Sea (26.0°–33.0°N, 120.0°–128.0°E) and southern Yellow Sea (31.0°–36.0°N, 120.0°–125.0°E). The spatial distributions of phytoplankton species composition and cell density were investigated by qualitative and quantitative methods and were compared with historical data to study phytoplankton species succession in the survey area. The results showed that there were 275 phytoplankton species belonging to 90 genera and 6 phyla in the survey area, of which 208 species belonged to 62 genera of Bacillariophyta and 56 species belonged to 20 genera of Pyrrophyta. The dominant phytoplankton species were Skeletonema dohrnii, Chaetoceros vanheurckii and Prorocentrum donghaiense. The phytoplankton cell densities ranged from 0.06×104 cells/L to 418.73×104 cells/L, with an average value of 21.46×104 cells/L. In spring, the average ratio of Bacillariophyta/Pyrrophyta was 41.13 for the entire study area. The areas with high phytoplankton cell density were mainly distributed in the northern South Yellow Sea and offshore waters of the East China Sea. According to a canonical correspondence analysis among phytoplankton and environmental parameters, the water Chl a concentrations were notably consistent with phytoplankton cell density (P<0.001), and both showed significant negative correlations with salinity and nitrite (P<0.05) and significant positive correlations with dissolved oxygen and pH (P<0.001). There was a significant positive correlation between diatom (both in cell density and in dominant species) and DMS (P<0.05), which indicated that diatoms play a greater role in DMS production in this investigated area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcolombri U, Ben-Dor S, Feldmesser E, et al. 2015. Identification of the algal dimethyl sulfide-releasing enzyme: a missing link in the marine sulfur cycle. Science, 348(6242): 1466–1469, doi: https://doi.org/10.1126/science.aab1586

    Article  Google Scholar 

  • Alcolombri U, Laurino P, Lara-Astiaso P, et al. 2014. DddD is a CoA-Transferase/Lyase producing dimethyl sulfide in the marine environment. Biochemistry, 53(34): 5473–5475, doi: https://doi.org/10.1021/bi500853s

    Article  Google Scholar 

  • Anderson D M, Glibert P M, Burkholder J M. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25(4): 704–726, doi: https://doi.org/10.1007/BF02804901

    Article  Google Scholar 

  • Andreae M O, Crutzen P J. 1997. Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science, 276(5315): 1052–1058, doi: https://doi.org/10.1126/science.276.5315.1052

    Article  Google Scholar 

  • Archer S D, Kimmance S A, Stephens J A, et al. 2013. Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosciences, 10(3): 1893–1908, doi: https://doi.org/10.5194/bg-10-1893-2013

    Article  Google Scholar 

  • Aubry F B, Cossarini G, Acri F, et al. 2012. Plankton communities in the northern Adriatic Sea: patterns and changes over the last 30 years. Estuarine, Coastal and Shelf Science, 115: 125–137, doi: https://doi.org/10.1016/j.ecss.2012.03.011

    Article  Google Scholar 

  • Caruana A M N, Malin G. 2014. The variability in DMSP content and DMSP lyase activity in marine dinoflagellates. Progress in Oceanography, 120: 410–424, doi: https://doi.org/10.1016/j.pocean.2013.10.014

    Article  Google Scholar 

  • Charlson R J, Lovelock J E, Andreae M O, et al. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114): 655–661, doi: https://doi.org/10.1038/326655a0

    Article  Google Scholar 

  • Chen-Tung Arthur Chen. 2009. Chemical and physical fronts in the Bohai, Yellow and East China seas. Journal of Marine Systems, 78(3): 394–410, doi: https://doi.org/10.1016/j.jmarsys.2008.11.016

    Article  Google Scholar 

  • Chen Yanghang. 2017. Ecological characteristics of phytoplankton and physiological mechanism of interspecies relationship between the key phytoplankton species in a scallop culture sea area of Bohai Bay (in Chinese)[dissertation]. **amen: **amen University

    Google Scholar 

  • Chen Qingchao, Chen Yaqu, Hu Yazhu. 1980. Preliminary study on the plankton communities in the southern Yellow Sea and the East China Sea. Haiyang Xuebao (in Chinese), 2(2): 149–157

    Google Scholar 

  • Chen Peng, Pan Delu, Mao Zhihua. 2015. Application of a laser fluorometer for discriminating phytoplankton species. Optics & Laser Technology, 67: 50–56, doi: https://doi.org/10.1016/j.optlastec.2014.09.013

    Article  Google Scholar 

  • Chen Baohong, Xu Zhuhua, Zhou Qiulin, et al. 2010. Long-term changes of phytoplankton community in **agu waters of **amen, China. Acta Oceanologica Sinica, 29(6): 104–114, doi: https://doi.org/10.1007/s13131-010-0081-4

    Article  Google Scholar 

  • Cheng Zhaodi, Gao Yahui, Liu Shicheng, et al. 2013a. Flora Algarum Marinarum Sinicarum. Tomus V. Bacillariophyta, No. III. Pennatae II. Naviculales, Naviculaceae, Cymbellaceae, Auriculaceae, Gomphonemaceae (in Chinese). Bei**g: Science Press

    Google Scholar 

  • Cheng Zhaodi, Gao Yahui, Liu Shicheng, et al. 2013b. Flora Algarum Marinarum Sinicarum, Tomus V. Bacillariophyta, No. II. Pennatae I. Diatomales, Achnanthales, Phaeodactylales, Eunotiales (in Chinese). Bei**g: Science Press

    Google Scholar 

  • Chiang Kuo-**, Chen Ying-Tun, Gong Gwo-Ching. 1999. Spring distribution of diatom assemblages in the East China Sea. Marine Ecology Progress Series, 186: 75–86, doi: https://doi.org/10.3354/meps186075

    Article  Google Scholar 

  • Chiang Kuo-**, Chou Yu-Hsuan, Chang Jeng, et al. 2004. Winter distribution of diatom assemblages in the East China Sea. Journal of Oceanography, 60(6): 1053–1062, doi: https://doi.org/10.1007/s10872-005-0013-7

    Article  Google Scholar 

  • Chinese Society of Oceanography. 2015. History of Oceanography in China (in Chinese). Bei**g: China Science and Technology Press

    Google Scholar 

  • Cho B C, Choi J K, Chung C S, et al. 1994. Uncoupling of bacteria and phytoplankton during a spring diatom bloom in the mouth of the Yellow Sea. Marine Ecology Progress Series, 115(1): 181–190, doi: https://doi.org/10.3354/meps115181

    Article  Google Scholar 

  • Dacey J W H, Blough N V. 1987. Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide. Geophysical Research Letters, 14(12): 1246–1249, doi: https://doi.org/10.1029/GL014i012p01246

    Article  Google Scholar 

  • Deng Xuwei, Chen Juan, Hansson L A, et al. 2021. Eco-chemical mechanisms govern phytoplankton emissions of dimethylsulfide in global surface waters. National Science Review, 8(2): nwaa140, doi: https://doi.org/10.1093/nsr/nwaa140

    Article  Google Scholar 

  • do Rosario Gomes H, Xu Qian, Ishizaka J, et al. 2018. The influence of riverine nutrients in niche partitioning of phytoplankton communities—A contrast between the Amazon River plume and the Changjiang (Yangtze) River diluted water of the East China Sea. Frontiers in Marine Science, 5: 343, doi: https://doi.org/10.3389/fmars.2018.00343

    Article  Google Scholar 

  • Du **aoming, Liu Houtian, Liu Ruoan, et al. 1998. The flux of oceanic dimethyl sulfide from coastal area in **amen to the atmosphere. Research of Environmental Sciences, 11(2): 34–36

    Google Scholar 

  • Duan Shanshan, **ng Lei, Zhang Hailong, et al. 2014. Upwelling and anthropogenic forcing on phytoplankton productivity and community structure changes in the Zhejiang coastal area over the last 100 years. Acta Oceanologica Sinica, 33(10): 1–9, doi: https://doi.org/10.1007/s13131-014-0535-1

    Article  Google Scholar 

  • Falkowski P G, Woodhead A D, Vivirito K. 1992. Primary Productivity and Biogeochemical Cycles in the Sea. New York: Plenum Press

    Book  Google Scholar 

  • Findlay D L, Kasian S E M, Turner M T, et al. 1999. Responses of phytoplankton and epilithon during acidification and early recovery of a lake. Freshwater Biology, 42(1): 159–175, doi: https://doi.org/10.1046/j.1365-2427.1999.00458.x

    Article  Google Scholar 

  • Furuya K, Kurita K, Odate T. 1996. Distribution of phytoplankton in the East China Sea in the winter of 1993. Journal of Oceanography, 52(3): 323–333, doi: https://doi.org/10.1007/BF02235927

    Article  Google Scholar 

  • General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. 2008. GB/T 12763.6-2007 Specifications for Oceanographic Survey—Part 6: Marine Biological Survey. Bei**g: Standards Press of China, 159

    Google Scholar 

  • Guan Bingxian. 1984. Major features of the shallow water hydrography in the East China Sea and Huanghai Sea. Elsevier Oceanography Series, 39: 1–13, doi: https://doi.org/10.1016/S0422-9894(08)70288-5

    Article  Google Scholar 

  • Guan Bingxian. 1994. Patterns and structures of the currents in Bohai, Huanghai and East China Seas. In: Zhou Di, Liang Yuanbo, Zeng Chengkui, eds. Oceanology of China Seas. Dordrecht: Springer, 17–26, doi: https://doi.org/10.1007/978-94-011-0862-1_3

    Google Scholar 

  • Guo Yujie. 1963. The nature of Chaetoceros flora of the Yellow Sea. Oceanologia et Limnologia Sinica, 6(4): 322–332

    Google Scholar 

  • Guo Shu**. 2012. Study on phytoplankton assemblage in the East China Sea (in Chinese)[dissertation]. Qingdao: Ocean University of China

    Google Scholar 

  • Guo Yujie, Qian Shuben. 2003. Flora Algarum Marinarum Sinicarum, Tomus V. Bacillariophyta No. I. Centricae (in Chinese). Bei**g: Science Press

    Google Scholar 

  • Guo Shu**, Tian Wei, Dai Minhan, et al. 2011. Phytoplankton assemblages in the East China Sea in summer 2009. Advances in Marine Science, 29(4): 474–486, doi: https://doi.org/10.3969/j.issn.1671-6647.2011.04.007

    Google Scholar 

  • Hays G C, Richardson A J, Robinson C. 2005. Climate change and marine plankton. Trends in Ecology & Evolution, 20(6): 337–344, doi: https://doi.org/10.1016/j.tree.2005.03.004

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, et al. 2018. Impacts of 1.5°C global warming on natural and human systems. In: Masson-Delmotte V, Zhai P, Pörtner H O, et al, eds. Global Warming of 1.5°C. https://unfccc.int/topics/science/workstreams/cooperation-with-the-ipcc/ipcc-special-report-on-global-warming-of-15-degc[2020-03-12]

  • Hu Min, Tang **aoyan, Li **long. 1995. Measurement of dimethyl sulfide in the Bo Sea and Gulf of Jiaozhou. Pure and Applied Chemistry, 67(8–9): 1481–1486

    Google Scholar 

  • Hu Min, Tang **aoyan, Li **long, et al. 1997. Dimethylsulfide in sea water in the Gulf of Jiaozhou. Acta Scientiae Circumstantiae, 17(1): 110–115

    Google Scholar 

  • Huang Zongguo, Lin Mao. 2012. The Living Species and Their Illustrations in China’s Seas (Part II), an Illustrated Guide to Species in China’s Seas Vol. 1 (in Chinese). Bei**g: China Ocean Press

    Google Scholar 

  • Huang Bangqin, Liu Yuan, Chen Jixin, et al. 2006. Temporal and spatial distribution of size-fractionized phytoplankton biomass in East China Sea and Huanghai Sea. Haiyang Xuebao (in Chinese), 28(2): 156–164, doi: https://doi.org/10.3321/j.issn:0253-4193.2006.02.021

    Google Scholar 

  • Huang Wenxiang, Sheng Liangfu, Zhu Lin. 1984. Phytoplankton in the Yellow Sea. Marine Environmental Science, 3: 19–28

    Google Scholar 

  • Jia Haibo, Shao Junbo, Hu Haoyan, et al. 2014. Changes and reason analysis of phytoplankton community structure in the Yangtze Estuary and adjacent sea before and after the impoundment of the Three Gorges Dam. Marine Science Bulletin, 33(3): 305–314, doi: https://doi.org/10.11840/j.issn.1001-6392.2014.03.009

    Google Scholar 

  • Jian Shan, Zhang Honghai, Yang Guipeng, et al. 2019. Variation of biogenic dimethylated sulfur compounds in the Changjiang River Estuary and the coastal East China Sea during spring and summer. Journal of Marine Systems, 199: 103222, doi: https://doi.org/10.1016/j.jmarsys.2019.103222

    Article  Google Scholar 

  • Jian Shan, Zhang Honghai, Zhang **g, et al. 2018. Spatiotemporal distribution characteristics and environmental control factors of biogenic dimethylated sulfur compounds in the East China Sea during spring and autumn. Limnology and Oceanography, 63(S1): S280–S298, doi: https://doi.org/10.1002/lno.10737

    Article  Google Scholar 

  • Jiang Rui, Wang Youshao. 2018. Modeling the ecosystem response to summer coastal upwelling in the northern South China Sea. Oceanologia, 60(1): 32–51, doi: https://doi.org/10.1016/j.oceano.2017.05.004

    Article  Google Scholar 

  • Jiao Nianzhi, Liu Chengzheng, Hong Huasheng, et al. 2003. Dynamics of dimethylsulfide and dimethylsulfoniopropionate produced by phytoplankton in the Chinese seas—Distribution patterns and affecting factors. Acta Botanica Sinica, 45(7): 774–786

    Google Scholar 

  • ** **aoying, Yuan Dongxing, Chen Meng, et al. 2004. Distribution of dimethylsulfide of **amen sea surface water in spring. Marine Environmental Science, 23(2): 12–15

    Google Scholar 

  • Karsten U, Kirst G O, Wiencke C. 1992. Dimethylsulphoniopropionate (DMSP) accumulation in green macioalgae from polar to temperate regions: interactive effects of light versus salinity and light versus temperature. Polar Biology, 12(6): 603–607, doi: https://doi.org/10.1007/BF00236983

    Google Scholar 

  • Karsten U, Kück K, Vogt C, et al. 1996. Dimethylsulfoniopropionate production in phototrophic organisms and its physiological functions as a cryoprotectant. In: Kiene R P, Visscher P T, Keller M D, et al, eds. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Boston: Springer, 143–153

    Chapter  Google Scholar 

  • Kiene R P, Gerard G. 1994. Determination of trace levels of dimethylsulfoxide (DMSO) in seawater and rainwater. Marine Chemistry, 47(1): 1–12, doi: https://doi.org/10.1016/0304-4203(94)90009-4

    Article  Google Scholar 

  • Kiene R P, Slezak D. 2006. Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnology and Oceanography: Methods, 4(4): 80–95, doi: https://doi.org/10.4319/lom.2006.4.80

    Google Scholar 

  • Kirst G O. 1990. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 21–53, doi: https://doi.org/10.1146/annurev.pp.41.060190.000321

    Article  Google Scholar 

  • Koblentz-Mishke O J, Volvovinsky V V, Kabanova J G. 1970. Plankton primary production of the world ocean. In: Wooster W S, ed. Scientific Exploration of the South Pacific. Washington: National Academy of Sciences, 183–193

    Google Scholar 

  • Lammers J M, van Soelen E E, Donders T H, et al. 2013. Natural environmental changes versus human impact in a Florida estuary (Rookery Bay, USA). Estuaries and Coasts, 36(1): 149–157, doi: https://doi.org/10.1007/s12237-012-9552-5

    Article  Google Scholar 

  • Lampitt R S, Wishner K F, Turley C M, et al. 1993. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Marine Biology, 116(4): 689–702, doi: https://doi.org/10.1007/BF00355486

    Article  Google Scholar 

  • Leira M, Sabater S. 2005. Diatom assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research, 39(1): 73–82, doi: https://doi.org/10.1016/j.watres.2004.08.034

    Article  Google Scholar 

  • Li Chaolun, Luan Fenghe. 1998. A proliminary study on the distribution of size-fractionated chlorophyll-a in the euphotic zone of the East China Sea in spring. Marine Sciences, (4): 59–62

  • Li Wei, Wang Yuheng, Wang Jianing, et al. 2012. Distributions of water masses and hydrographic structures in the Yellow Sea and East China Sea in spring and summer 2011. Oceanologia et Limnologia Sinica, 43(3): 615–623

    Google Scholar 

  • Liu Chao, Kang Jiancheng, Wang Guodong, et al. 2012. Monthly change of nutrients impact on phytoplankton in Kuroshio of East China Sea. Energy Procedia, 16: 1193–1198, doi: https://doi.org/10.1016/j.egypro.2012.01.190

    Article  Google Scholar 

  • Liu Yue, Liu Chunying, Yang Guipeng, et al. 2016. Biogeochemistry of dimethylsulfoniopropionate, dimethylsulfide and acrylic acid in the Yellow Sea and the Bohai Sea during autumn. Environmental Chemistry, 13(1): 127–139, doi: https://doi.org/10.1071/EN15025

    Article  Google Scholar 

  • Liu Ruiyu, Xu Fengshan. 1963. Preliminary studies on the benthic fauna of the Yellow Sea and the East China Sea. Oceanologia et Limnologia Sinica, 5(4): 306–321

    Google Scholar 

  • Lu Douding, Goebel J. 2001. Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu SP. nov. from the East China Sea. Chinese Journal of Oceanology and Limnology, 19(4): 337–344, doi: https://doi.org/10.1007/BF02850738

    Article  Google Scholar 

  • Luan Qingshan. 2007. Ecological study on phytoplankton assemblage in Changjiang River Estuary and its adjacent waters (in Chinese)[dissertation]. Qingdao: Ocean University of China

    Google Scholar 

  • Luo Minbo, Lu Jianjian, Wang Yunlong, et al. 2007. Horizontal distribution and dominant species of phytoplankton in the East China Sea. Acta Ecologica Sinica, 27(12): 5076–5085, doi: https://doi.org/10.3321/j.issn:1000-0933.2007.12.016

    Google Scholar 

  • Ma Qiju. 2004. The emission of dimethyl sulfur and its contribution to sulfate in China offshore (in Chinese)[dissertation]. Bei**g: Peking University

    Google Scholar 

  • Ma Sha. 2018. Studies on responses of phytoplankton and community structure to ocean acidification (in Chinese)[dissertation]. Shanghai: Shanghai Ocean University

    Google Scholar 

  • Ma Qiju, Hu Min, Tian Xudong, et al. 2004. Dimethylsulfide emission in Qingdao near-shore waters and atmospheric dimethylsulfide concentration variation. Environmental Science, 25(1): 20–24

    Google Scholar 

  • Najjar R G, Pyke C R, Adams M B, et al. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science, 86(1): 1–20, doi: https://doi.org/10.1016/j.ecss.2009.09.026

    Article  Google Scholar 

  • Najjar R G, Walker H A, Anderson P J, et al. 2000. The potential impacts of climate change on the mid-Atlantic coastal region. Climate Research, 14(3): 219–233

    Article  Google Scholar 

  • Nick F M, Vieli A, Andersen M L, et al. 2013. Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature, 497(7448): 235–238, doi: https://doi.org/10.1038/nature12068

    Article  Google Scholar 

  • Nishiguchi M K, Somero G N. 1992. Temperature- and concentration-dependence of compatibility of the organic osmolyte β-dimethylsulfoniopropionate. Cryobiology, 29(1): 118–124, doi: https://doi.org/10.1016/0011-2240(92)90011-P

    Article  Google Scholar 

  • Noman M A, Sun Jun, Gang Qian, et al. 2019. Factors regulating the phytoplankton and tintinnid microzooplankton communities in the East China Sea. Continental Shelf Research, 181: 14–24, doi: https://doi.org/10.1016/j.csr.2019.05.007

    Article  Google Scholar 

  • Norse E A. 1993. Global Marine Biological Diversity: A Strategy for Building Conservation into Decision Making. Washington: Island Press

    Google Scholar 

  • Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Oxford: Pergamon Press

    Google Scholar 

  • Pielou E C. 1969. An Introduction to Mathematical Ecology. New York: Wiley-Interscience

    Google Scholar 

  • Qi Yuzao, Wang Yan. 2003. What the Prorocentrum species should be? —A review on identification of a Prorocentrum species from the East China Sea. Chinese Journal of Applied Ecology, 14(7): 1188–1190

    Google Scholar 

  • Qu Bo, Yang Guipeng, Guo Liyan, et al. 2020. The satellite derived environmental factors and their relationships with dimethylsulfide in the east marginal seas of China. Journal of Marine Systems, 204: 103305, doi: https://doi.org/10.1016/j.jmarsys.2020.103305

    Article  Google Scholar 

  • Reynolds C S. 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology, 14(2): 111–142, doi: https://doi.org/10.1111/j.1365-2427.1984.tb00027.x

    Article  Google Scholar 

  • Round F, Crawford R M, Mann D G. 1990. The Diatoms, Biology and Morphology of the Genera. Cambridge: Cambridge University Press

    Google Scholar 

  • Sarmiento J L, Toggweiler J R, Najjar R. 1988. Ocean carbon-cycle dynamics and atmospheric Pco2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 325(1583): 3–21, doi: https://doi.org/10.1098/rsta.1988.0039

    Google Scholar 

  • Schaffer G, Leth O, Ulloa O, et al. 2000. Warming and circulation change in the eastern South Pacific Ocean. Geophysical Research Letters, 27(9): 1247–1250, doi: https://doi.org/10.1029/1999GL010952

    Article  Google Scholar 

  • Sekerc Y, Ozarslan R. 2020. Oxygen-plankton model under the effect of global warming with nonsingular fractional order. Chaos, Solitons & Fractals, 132: 109532, doi: https://doi.org/10.1016/j.chaos.2019.109532

    Article  Google Scholar 

  • Shannon C E. 1948. A mathematical theory of communication. The Bell System Technical Journal, 27(4): 623–656, doi: https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

    Article  Google Scholar 

  • Shannon C E, Weaver W. 1949. The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press

    Google Scholar 

  • Simó R. 2001. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends in Ecology Evolution, 16(6): 287–294, doi: https://doi.org/10.1016/S0169-5347(01)02152-8

    Article  Google Scholar 

  • Song Shuqun. 2010. Phytoplankton functional groups in the Yellow Sea and the East China Sea (in Chinese)[dissertation]. Bei**g: Chinese Academy of Sciences

    Google Scholar 

  • Song Shuqun, Li Zhao, Li Caiwen, et al. 2017. The response of spring phytoplankton assemblage to diluted water and upwelling in the eutrophic Changjiang (Yangtze River) Estuary. Acta Oceanologica Sinica, 36(12): 101–110, doi: https://doi.org/10.1007/s13131-017-1094-z

    Article  Google Scholar 

  • Spiese C E, Kieber D J, Nomura C T, et al. 2009. Reduction of dimethylsulfoxide to dimethylsulfide by marine phytoplankton. Limnology and Oceanography, 54(2): 560–570, doi: https://doi.org/10.4319/lo.2009.54.2.0560

    Article  Google Scholar 

  • Stefels J. 2000. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Journal of Sea Research, 43(3–4): 183–197, doi: https://doi.org/10.1016/S1385-1101(00)00030-7

    Article  Google Scholar 

  • Stefels J, Steinke M, Turner S, et al. 2007. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. In: van Leeuwe M A, Stefels J, Belviso B, eds. Phaeocystis, Major Link in the Biogeochemical Cycling of Climate-Relevant Elements. Dordrecht: Springer, 245–275, doi: https://doi.org/10.1007/978-1-4020-6214-8_18

    Chapter  Google Scholar 

  • Stefels J, van Leeuwe M A. 1998. Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). I. Intracellular DMSP concentrations. Journal of Phycology, 34(3): 486–495, doi: https://doi.org/10.1046/j.1529-8817.1998.340486.x

    Article  Google Scholar 

  • Sun Jun. 2011. Marine phytoplankton and biological carbon sink. Acta Ecologica Sinica, 31(18): 5372–5378

    Google Scholar 

  • Sun Jun, Tian Wei. 2011. Phytoplankton in Yangtze River Estuary and its adjacent waters in spring in 2009: species composition and size-fractionated chlorophyll a. Chinese Journal of Applied Ecology, 22(1): 235–242

    Google Scholar 

  • Tan Shujie, Gong **angzhong, Sun Jun, et al. 2009. The phytoplankton community in spawning ground of the East China Sea and its adjacent waters in spring. Marine Sciences, 33(8): 5–10

    Google Scholar 

  • Taylor J C, Prygiel J, Vosloo A, et al. 2007. Can diatom-based pollution indices be used for biomonitoring in South Africa? A case study of the Crocodile West and Marico water management area. Hydrobiologia, 592(1): 455–464, doi: https://doi.org/10.1007/s10750-007-0788-1

    Article  Google Scholar 

  • Thariath D V, Divakaran D, Chenicherry S. 2019. Influence of salinity on the dimethylsulphoniopropionate production from Prymnesium simplex. Sustainable Environment Research, 29: 17, doi: https://doi.org/10.1186/s42834-019-0017-4

    Article  Google Scholar 

  • Tian Wei, Sun Jun, Fan **aopeng, et al. 2010. Phytoplankton community in coastal waters of the East China Sea in spring 2008. Advances in Marine Science, 28(2): 170–178, doi: https://doi.org/10.3969/j.issn.1671-6647.2010.02.006

    Google Scholar 

  • Torrisi M, Dell’Uomo A. 2006. Biological monitoring of some Apennine rivers (central Italy) using the diatom-based Eutrophication/Pollution Index (EPI-D) compared to other European diatom indices. Diatom Research, 21(1): 159–174, doi: https://doi.org/10.1080/0269249X.2006.9705657

    Article  Google Scholar 

  • Van Meerssche E, Pinckney J L. 2017. The influence of salinity in the domoic acid effect on estuarine phytoplankton communities. Harmful Algae, 69: 65–74, doi: https://doi.org/10.1016/j.hal.2017.10.003

    Article  Google Scholar 

  • Wang Chunsheng. 2011. Research Report on Offshore Marine Life and Ecology in China. Hangzhou: Second Institute of Oceanography, 93–94

    Google Scholar 

  • Wang Dan, Huang Bangqin, Liu **n, et al. 2014. Seasonal variations of phytoplankton phosphorus stress in the Yellow Sea Cold Water Mass. Acta Oceanologica Sinica, 33(10): 124–135, doi: https://doi.org/10.1007/s13131-014-0547-x

    Article  Google Scholar 

  • Wang Yu, Kang Jianhua, Ye Youyin, et al. 2016. Phytoplankton community and environmental correlates in a coastal upwelling zone along western Taiwan Strait. Journal of Marine Systems, 154: 252–263, doi: https://doi.org/10.1016/j.jmarsys.2015.10.015

    Article  Google Scholar 

  • Wang Dan, Sun Jun, Zhou Feng, et al. 2008. Phytoplankton of Changjiang (Yangtze River) Estuary hypoxia area and the adjacent East China Sea in June 2006. Oceanologia et Limnologia Sinica, 39(6): 619–627

    Google Scholar 

  • Wen Fei, Sun **aoxia, Zheng Shan, et al. 2012. Spatial and seasonal variations of chlorophyll a and primary productivity in spring and summer in the Yellow Sea and East China Sea. Oceanologia et Limnologia Sinica, 43(3): 438–444

    Google Scholar 

  • Wolfe G V, Levasseur M, Cantin G, et al. 2000. DMSP and DMS dynamics and microzooplankton grazing in the Labrador Sea: application of the dilution technique. Deep3Sea Research Part I: Oceanographic Research Papers, 47(12): 2243–2264, doi: https://doi.org/10.1016/S0967-0637(00)00028-5

    Article  Google Scholar 

  • Wolfe G V, Steinke M. 1996. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnology and Oceanography, 41(6): 1151–1160, doi: https://doi.org/10.4319/lo.1996.41.6.1151

    Article  Google Scholar 

  • Wu Jiunn-Tzong, Kow Lai-Tsu. 2002. Applicability of a generic index for diatom assemblages to monitor pollution in the tropical River Tsanwun, Taiwan. Journal of Applied Phycology, 14(1): 63–69, doi: https://doi.org/10.1023/A:1015277013102

    Article  Google Scholar 

  • Wu **, Li Peifeng, Liu Chunying, et al. 2017. Biogeochemistry of dimethylsulfide, dimethylsulfoniopropionate, and acrylic acid in the Changjiang Estuary and the East China Sea. Journal of Geophysical Research: Oceans, 122(12): 10245–10261, doi: https://doi.org/10.1002/2017JC013265

    Article  Google Scholar 

  • **ao Wupeng, Liu **n, Huang Bangqin. 2013. Phytoplankton community structure and its environmental controlling in the nearshore surface water of the East China Sea in spring. Journal of Marine Sciences, 31(3): 76–82

    Google Scholar 

  • **e Wenling. 2007. Community structure and dynamics of planktonic diatoms in typical areas of East China Sea (in Chinese)[dissertation]. **amen: **amen University

    Google Scholar 

  • Xu Feng, ** Na, Ma Zhun, et al. 2019. Distribution, occurrence, and fate of biogenic dimethylated sulfur compounds in the Yellow Sea and Bohai Sea during spring. Journal of Geophysical Research: Oceans, 124(8): 5787–5800, doi: https://doi.org/10.1029/2019JC015085

    Article  Google Scholar 

  • Yang Shimin, Li Ruixiang, Dong Shugang. 2016a. Dinoflagellates in the China’s Seas I (Prorocentrales, Dinophysiales) (in Chinese). Bei**g: China Ocean Press

    Google Scholar 

  • Yang Shimin, Li Ruixiang, Dong Shugang. 2016b. Dinoflagellates in the China’s Seas H (Gonyaulacales) (in Chinese). Bei**g: China Ocean Press

    Google Scholar 

  • Yang Jian, Yang Guipeng, Zhang Honghai, et al. 2015a. Spatial distribution of dimethylsulfide and dimethylsulfoniopropionate in the Yellow Sea and Bohai Sea during summer. Chinese Journal of Oceanology and Limnology, 33(4): 1020–1038, doi: https://doi.org/10.1007/s00343-015-4188-5

    Article  Google Scholar 

  • Yang Jian, Yang Guipeng, Zhang Honghai, et al. 2016c. Temporal variations of dimethylsulfide and dimethylsulfoniopropionate in the southern Yellow Sea in spring and autumn. Acta Oceanologica Sinica, 35(2): 76–87, doi: https://doi.org/10.1007/s13131-015-0780-y

    Article  Google Scholar 

  • Yang Guipeng, Zhang Jianwu, Li Li, et al. 2000. Dimethylsulfide in the surface water of the East China Sea. Continental Shelf Research, 20(1): 69–82, doi: https://doi.org/10.1016/S0278-4343(99)00039-4

    Article  Google Scholar 

  • Yang Guipeng, Zhang Shenghui, Zhang Honghai, et al. 2015b. Distribution of biogenic sulfur in the Bohai Sea and northern Yellow Sea and its contribution to atmospheric sulfate aerosol in the late fall. Marine Chemistry, 169: 23–32, doi: https://doi.org/10.1016/j.marchem.2014.12.008

    Article  Google Scholar 

  • Yang Guipeng, Zhang Honghai, Zhou Limin, et al. 2011. Temporal and spatial variations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow Sea. Continental Shelf Research, 31(13): 1325–1335, doi: https://doi.org/10.1016/j.csr.2011.05.001

    Article  Google Scholar 

  • Yu Peiran, Guo Tianfeng, Zhu Yujiao, et al. 2017. Concentration and size distribution of amines in marine atmospheric particles over Yellow Sea, East China Sea and Northwest Pacific Ocean. Periodical of Ocean University of China, 47(5): 19–26

    Google Scholar 

  • Zeebe R E. 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annual Review of Earth and Planetary Sciences, 40: 141–165, doi: https://doi.org/10.1146/annurev-earth-042711-105521

    Article  Google Scholar 

  • Zhang Qilong, Weng Xuechuan, Yang Yuling. 1996. Analysis of water masses in the south Yellow Sea in spring. Oceanologia et Limnologia Sinica, 27(4): 421–428

    Google Scholar 

  • Zhang Shenghui, Yang Guipeng, Zhang Honghai, et al. 2014. Spatial variation of biogenic sulfur in the South Yellow Sea and the East China Sea during summer and its contribution to atmospheric sulfate aerosol. Science of the Total Environment, 488–489, 157–167, doi: https://doi.org/10.1016/j.scitotenv.2014.04.074

  • Zhao Qibiao, Sun Jun, Li Dan, et al. 2015. Seasonal changes of the phytoplankton along hypoxia area and adjacent waters in the East China Sea. Acta Ecologica Sinica, 35(7): 2366–2379, doi: https://doi.org/10.5846/stxb201306021273

    Google Scholar 

  • Zhao Yuyin, Sun Jun, Wei Yuqiu. 2020. Research progress in the effects of ocean acidification on phytoplankton physiology. Marine Sciences, 44(10): 121–132, doi: https://doi.org/10.11759/hykx20200203001

    Google Scholar 

  • Zhao Yue, Yu Rencheng, Kong Fanzhou, et al. 2019a. Features of phytoplankton communities and their controlling factors in the Yellow Sea and the East China Sea in summer time. Oceanologia et Limnologia Sinica, 50(4): 838–850

    Google Scholar 

  • Zhao Yue, Yu Rencheng, Kong Fanzhou, et al. 2019b. Distribution patterns of picosized and nanosized phytoplankton assemblages in the East China Sea and the Yellow Sea: implications on the impacts of Kuroshio intrusion. Journal of Geophysical Research: Oceans, 124(2): 1262–1276, doi: https://doi.org/10.1029/2018JC014681

    Article  Google Scholar 

  • Zhao Li, Zhao Yanchu, Dong Yi, et al. 2018. Influence of the northern Yellow Sea Cold Water Mass on picoplankton distribution around the Zhangzi Island, northern Yellow Sea. Acta Oceanologica Sinica, 37(5): 96–106, doi: https://doi.org/10.1007/s13131-018-1149-9

    Article  Google Scholar 

  • Zhou Qianqian. 2014. Studies on community structure and biodiversity of phytoplankton in eastern marginal seas of China and Beibu Gulf (in Chinese) [dissertation]. **amen: **amen University

    Google Scholar 

  • Zhou Qianqian, Chen Chang**, Liang Junrong, et al. 2015. Species composition and seasonal variation of netz-phytoplankton in the eastern marginal China seas. Biodiversity Science, 23(1): 23–32, doi: https://doi.org/10.17520/biods.2014103

    Article  Google Scholar 

  • Zhou Mingjiang, Shen Zhiliang, Yu Rencheng. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research, 28(12): 1483–1489, doi: https://doi.org/10.1016/j.csr.2007.02.009

    Article  Google Scholar 

  • Zhu Shu**, Guo Yujie. 1959. A decade of marine phytoplankton research in China. Oceanologia et Limnologia Sinica, 2(4): 223–229

    Google Scholar 

  • Zubkov M V, Fuchs B M, Archer S D, et al. 2002. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep—Sea Research Part II: Topical Studies in Oceanography, 49(15): 3017–3038, doi: https://doi.org/10.1016/S0967-0645(02)00069-3

    Article  Google Scholar 

Download references

Acknowledgements

We thank the captain and crew of the R/V Dongfanghong 2 for their help and cooperation during the cruises. We would like to express our sincere thanks to Guipeng Yang of China Ocean University for providing DMS, DMSP and other related data, and to Yu ** Chen

  • Authors

    Corresponding authors

    Correspondence to Yahui Gao or Chang** Chen.

    Additional information

    Foundation item: The National Key Research and Development Program of China under contract Nos 2016YFA0601302 and 2018FY100202.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Zhang, J., Chen, Y., Ren, X. et al. Distribution of phytoplankton in the East China Sea and the southern Yellow Sea in spring in relation to environmental variables and dimethylsulfide compounds. Acta Oceanol. Sin. 41, 41–53 (2022). https://doi.org/10.1007/s13131-021-1913-0

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s13131-021-1913-0

    Key words

    Navigation