Log in

Seismic phases from the Moho and its implication on the ultraslow spreading ridge

  • Article
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The Moho interface provides critical evidence for crustal thickness and the mode of oceanic crust accretion. The seismic Moho interface has not been identified yet at the magma-rich segments (46°–52°E) of the ultraslow spreading Southwestern Indian Ridge (SWIR). This paper firstly deduces the characteristics and domains of seismic phases based on a theoretical oceanic crust model. Then, topographic correction is carried out for the OBS record sections along Profile Y3Y4 using the latest OBS data acquired from the detailed 3D seismic survey at the SWIR in 2010. Seismic phases are identified and analyzed, especially for the reflected and refracted seismic phases from the Moho. A 2D crustal model is finally established using the ray tracing and travel-time simulation method. The presence of reflected seismic phases at Segment 28 shows that the crustal rocks have been separated from the mantle by cooling and the Moho interface has already formed at zero age. The 2D seismic velocity structure across the axis of Segment 28 indicates that detachment faults play a key role during the processes of asymmetric oceanic crust accretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ao Wei, Zhao Minghui, Qiu Xuelin, et al. 2010. The correction of shot and OBS position in the 3D seismic experiment of the SW Indian Ocean Ridge. Chinese Journal of Geophysics (in Chinese), 53(6): 1072–1081

    Article  Google Scholar 

  • Barth G A, Mutter J C. 1996. Variability in oceanic crustal thickness and structure: Multichannel seismic reflection results from the northern East Pacific Rise. Journal of Geophysical Research, 101(B8): 17951–17975

    Article  Google Scholar 

  • Blackman D K, Canales J P, Harding A. 2009. Geophysical signatures of oceanic core complexes. Geophysical Journal International, 178(2): 593–613

    Article  Google Scholar 

  • Boudier F, Nicolas A. 1995. Nature of the Moho transition zone in the Oman ophiolite. Journal of Petrology, 36(3): 777–796

    Article  Google Scholar 

  • Cann J R, Blackman D K, Smith D K, et al. 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature, 385(6614): 329–332

    Article  Google Scholar 

  • Cannat M, Rommevaux-Jestin C, Sauter D, et al. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49°to 69°E). Journal of Geophysical Research, 104(B10): 22825–22843

    Article  Google Scholar 

  • Cannat M, Sauter D, Escartín J, et al. 2009. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges. Earth and Planetary Science Letters, 288(1): 174–183

    Article  Google Scholar 

  • Dannowski A, Grevemeyer I, Ranero C R, et al. 2010. Seismic structure of an oceanic core complex at the Mid-Atlantic Ridge, 22°19′N. Journal of Geophysical Research, 115(B7): B07106

    Article  Google Scholar 

  • Davydova N I, Kosminskaya I P, Kapustian N K, et al. 1972. Models of the Earth’s crust and M-boundary. Z. Geophys, 38(3): 369–393

    Google Scholar 

  • Escartin J, Smith D K, Cann J, et al. 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455(7214): 790–794

    Article  Google Scholar 

  • Fujiwara T, Lin J, Matsumoto T, et al. 2003. Crustal evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty fracture zone in the last 5 Ma. Geochemistry Geophysics Geosystems, 4(3): 1024

    Article  Google Scholar 

  • Garmany J. 1989. Accumulations of melt at the base of young oceanic crust. Nature, 340: 628–632

    Article  Google Scholar 

  • Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets. Earth and Planetary Science Letters, 187(3): 283–300

    Article  Google Scholar 

  • Hallenborg E, Harding A J, Kent G M, et al. 2003. Seismic structure of 15 Ma oceanic crust formed at an ultrafast spreading East Pacific Rise: Evidence for kilometer-scale fracturing from dip** reflectors. Journal of Geophysical Research, 108(B11): 2532

    Article  Google Scholar 

  • Herron T J, Stoffa P L, Buhl P. 1980. Magma chamber and mantle reflections-East Pacific Rise. Geophysical Research Letters, 7(11): 989–992

    Article  Google Scholar 

  • Jousselin D, Nicolas A. 2000. The Moho transition zone in the Oman ophiolite-relation with wehrlites in the crust and dunites in the mantle. Marine Geophysical Researches, 21(3–4): 229–241

    Article  Google Scholar 

  • Kent G M, Singh S C, Harding A J, et al. 2000. Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean-ridge discontinuities. Nature, 406(6796): 614–618

    Article  Google Scholar 

  • Mendel V, Sauter D, Rommevaux-Jestin C, et al. 2003. Magmato-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge: Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern. Geochemistry Geophysics Geosystems, 4(5): 9102

    Article  Google Scholar 

  • Miller D J, Christensen N I. 1997. Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, south of the Kane Transform Zone (MARK). Proceedings of the Ocean Drilling Program Scientific results. Ocean Drilling Program, 153: 437–454

    Google Scholar 

  • Minshull T A, Muller M R, White R S. 2006. Crustal structure of the Southwest Indian Ridge at 66°E: seismic constraints. Geophysical Journal International, 166: 135–147

    Article  Google Scholar 

  • Minshull T A, White R S. 1996. Thin Crust on the Flanks of the Slow Spreading Southwest Indian Ridge. Geophysical Journal International, 125(1): 139–148

    Article  Google Scholar 

  • Muller M R, Minshull T A, White R S. 1999. Segmentation and melt supply at the Southwest Indian Ridge. Geology, 27(10): 867–870

    Article  Google Scholar 

  • Muller M R, Minshull T A, White R S. 2000. Crustal structure of the Southwest Indian Ridge at the Atlantis II fracture zone. Journal of Geophysical Research, 105(B11): 25809–25828

    Article  Google Scholar 

  • Muller M R, Robinson C J, Minshull T A, et al. 1997. Thin crust beneath ocean drilling program borehole 735B at the Southwest Indian Ridge? Earth and Planetary Science Letters, 148(1): 93–107

    Article  Google Scholar 

  • Mutter J C, Carton H D. 2013. The mohorovicic discontinuity in ocean basins: Some observations from seismic data. Tectonophysics, doi: 10.1016/j.tecto.2013.02.018

    Google Scholar 

  • Mutter J C, Detrick R S. 1984. Multichannel seismic evidence for anomalously thin crust at Blake Spur fracture zone. Geology, 12(9): 534–537

    Article  Google Scholar 

  • Okino K, Matsuda K, Christie D M, et al. 2004. Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic Discordance. Geochemistry Geophysics Geosystems, 5(12): Q12012

    Article  Google Scholar 

  • Qiu Xuelin, Zhao Minghui, Ao Wei, et al. 2011. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3117–3128

    Google Scholar 

  • Ranero C R, Reston T J, Belykh I, et al. 1997. Reflective oceanic crust formed at a fast-spreading center in the Pacific. Geology, 25(6): 499–502

    Article  Google Scholar 

  • Reston T J, Weinrebe W, Grevemeyer I, et al. 2002. A rifted inside corner massif on the Mid-Atlantic Ridge at 5 S. Earth and Planetary Science Letters, 200(3): 255–269

    Article  Google Scholar 

  • Sauter D, Carton H, Mendel V, et al. 2004. Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50 30Lce Lcience Lry Science Lochemistry Geophysics research, 2000, 105(B4): 8205–8226.nal ocenters. Geochemistry Geophysics Geosystems, 5(5): Q05K08

    Article  Google Scholar 

  • Sauter D, Patriat P, Rommevaux-Jestin C, et al. 2001. The Southwest Indian Ridge between 49°15′E and 57°E: Focused accretion and magma redistribution. Earth and Planetary Science Letters, 192(3): 303–317

    Article  Google Scholar 

  • Seher T, Crawford W C, Singh S C, et al. 2010. Crustal velocity structure of the Lucky Strike segment of the Mid-Atlantic Ridge at 37°N from seismic refraction measurements. Journal of Geophysical Research, 115(B3): 28

    Article  Google Scholar 

  • Singh S C, Harding A J, Kent G M, et al. 2006. Seismic reflection images of the Moho underlying melt sills at the East Pacific Rise. Nature, 442(7100): 287–290

    Article  Google Scholar 

  • Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2007. Discovery of the first active hydrothermal vent field at the ultraslow spreading Southwest Indian Ridge. InterRidge News, 16: 25–26

    Google Scholar 

  • Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40(1): 47–50

    Article  Google Scholar 

  • Tucholke B E, Lin J, Kleinrock M C. 1998. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research, 103(B5): 9857–9866

    Article  Google Scholar 

  • Tucholke B E, Lin J. 1994. A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research, 99(B6): 11937–11958

    Article  Google Scholar 

  • White R S, McKenzie D, O’Nions R K. 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research, 97(B13): 19683–19715

    Article  Google Scholar 

  • Zelt C A, Smith R B. 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophysical Journal International, 108(1): 16–34

    Article  Google Scholar 

  • Zeng Rongsheng. 1984. Introduction to Solid Earth Physics (in Chinese). Bei**g: Science Press

    Google Scholar 

  • Zhang Jiazheng, Zhao Minghui, Qiu Xuelin, et al. 2012. OBS seismic data processing and preliminary results on the hydrothermal field of the Southwest Indian Ridge. Journal of Tropical Oceanography (in Chinese), 31(3): 79–89

    Google Scholar 

  • Zhao Minghui, Qiu Xuelin, Li Jiabiao, et al. 2010. Research development and prospect on three-dimensional seismic structures of slow and ultraslow spreading ocean ridges. Journal of Tropical Oceanography (in Chinese), 29(6): 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Zhao.

Additional information

Foundation item: The National Natural Science Foundation of China under contract Nos 41176053, 41076029, 91028002 and 41176046; Dayang 115 under contract No. DYXM-115-02-3-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhao, M., Qiu, X. et al. Seismic phases from the Moho and its implication on the ultraslow spreading ridge. Acta Oceanol. Sin. 32, 75–86 (2013). https://doi.org/10.1007/s13131-013-0393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-013-0393-2

Key words

Navigation