Log in

Diversification and evolutionary history of brush-tailed mice, Calomyscidae (Rodentia), in southwestern Asia

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Brush-tailed mice, family Calomyscidae, are endemic to southwestern Asia and are represented by eight described species and three additional lineages. Although this family includes only a single genus, Calomyscus, in which several molecular phylogenies were recovered as a monophyletic clade, no updated evolutionary survey has been undertaken until now. We present a time-calibrated molecular phylogenetic tree of members of this genus using mitochondrial and nuclear markers. According to our results, divergence of calomyscid species occurred between 5.85 and 3.35 Mya during the Late Miocene and Pliocene. It seems that the species that occur in the eastern part of the range of the family diverged earlier (highest posterior density (HPD) 3.95–7.28 Mya) from congeners than those from the western part (HPD 2.18–4.24 Mya). Furthermore, we provide new insights on a poorly known species, C. grandis, endemic to the Elburz Mountains, including its phylogeny, morphology (geometric morphometric, karyology, and traditional morphometric methods), and distribution. Our findings show greater haplotype diversity than previously reported and extend the known range of C. grandis in northern Iran. Molecular data detects the existence of an additional distinct lineage from the Zagros Mountains, which appears to be differentiated from other lineages of Calomyscus at levels observed between species. Morphologically, compared to other species, the new lineage is the largest brush-tailed mouse and shows a number of remarkable differences in cranial features (e.g., widest cranium and highest mandible) with chromosomal component 2n = 44 and FNa = 62. Higher species diversity of calomyscids around the Iranian Plateau may be the result of geological events and the subsequent aridification during the Pliocene. The Lut Desert and the Zagros Mountains provided barriers and refugal habitat, respectively, that likely contributed to speciation events within the genus. Additional sampling may discover more distinct lineages in the Zagros Mountains or Anatolia and the eastern Mediterranean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated or analyzed during this study are included within the article and its supplementary information files.

References

  • Abdrakhmatov, K. Y., Aldazhanov, S. A., Hager, B. H., Hamburger, M. W., Herring, T. A., Kalabaev, K. B., et al. (1996). Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature, 384, 450–453.

    Article  CAS  Google Scholar 

  • Aguilar, J.-P., Brandy, L. D., & Thaler, L. (1983). Les rongeurs de Salobreňa (sud de L’Espagne) et le probleme de la migration Messinienne. Paléobiologie continentale, 14(2), 3–17.

    Google Scholar 

  • Agustí, J., & Casanovas-Vilar, I. (2003). Neogene gerbils from Europe. In: Reumer, J. W. F., & Wessels, W. (Eds.) Distribution and migration of Tertiary mammals in Eurasia. A volume in honour of Hans de Bruijn. Denisia, 10, 13–21.

  • Ahmadzadeh, F., Carretero, M. A., Harris, D. J., Perera, A., & Böhme, W. (2012). A molecular phylogeny of the eastern group of ocellated lizard genus Timon (Sauria: Lacertidae) based on mitochondrial and nuclear DNA sequences. Amphibia-Reptilia, 33, 1–10.

    Article  Google Scholar 

  • Akaike, H. (1974). New look at statistical-model identification. IEEE Transactions On Automatic Control, A, 19, 716–723.

    Article  Google Scholar 

  • Akbarirad, S., Darvish, J., Aliabadian, M., & Kilpatrick, C. W. M. (2015). Biosystematic study of Calomyscus mystax (Rodentia, Calomyscidae) from northeastern Iran. Iranian Journal of Animal Biosystematics, 11(1), 65–77.

    Google Scholar 

  • Akbarirad, S., Darvish, J., & Aliabadian, M. (2016a). Increased species diversity of brush-tailed mice, genus Calomyscus (Calomyscidae, Rodentia), in the Zagros Mountains, western Iran. Mammalia, 80(5), 549–562.

    Article  Google Scholar 

  • Akbarirad, S., Darvish, J., & Aliabadian, M. (2016b). Phylogeography of Calomyscus elburzensis (Calomyscidae, Rodentia) around the central Iranian Desert with description of a new subspecies in center of Iranian Plateau. Journal of Science, 27, 5–21.

    Google Scholar 

  • Akbarirad, S., Darvish, J., & Aliabadian, M. (2016c). Molecular, chromosomal and morphometric variation of Calomyscus hotsoni and C. elburzensis (Calomyscidae, Rodentia) in the East Iran. Folia Zoologica, 65(1), 27–37.

    Article  Google Scholar 

  • Alhajeri, B. H., Hunt, O. J., & Steppan, S. J. (2015). Molecular systematics of gerbils and deomyines (Rodentia: Gerbillinae, Deomyinae) and a test of desert adaptation in the tympanic bulla. Journal of Zoological Systematics and Evolutionary Research, 53(4), 312–330.

    Article  Google Scholar 

  • Aliabadian, M., Kaboli, M., Prodon, R., Nijman, V., & Vences, M. (2007). Phylogeny of Palearctic wheatears (genus Oenanthe) congruence between morphometric and molecular data. Molecular Phylogenetics and Evolution, 42, 665–675.

    Article  CAS  PubMed  Google Scholar 

  • Aliabadian, M., Nijman, V., Mahmoudi, A., Naderi, M., Vonk, R., & Vences, M. (2014). ExcaliBAR a simple and fast software utility to calculate intra- and interspecific distances from DNA barcodes. Contributions to Zoology, 83, 79–83.

    Article  Google Scholar 

  • Bradley, R. D., & Baker, R. J. (2001). A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy, 82, 960–973.

    Article  Google Scholar 

  • Breno, M., Herwig, L., & Donger, S. V. (2011). Traditional and geometric morphometrics for studying skull morphology during growth in Mastomys natalensis (Rodentia: Muridae). Journal of Mammalogy, 92(6), 1395–1406.

    Article  Google Scholar 

  • Bruford, M. W., Hanotte, O., Brookfield, J. F. Y., & Burke, T. (1992). Single locus and multilocus DNA fingerprinting. In A. R. Hoelzel (Ed.), Molecular genetic analysis of populations. A practical approach (pp. 225–269). Oxford: Oxford University Press.

    Google Scholar 

  • Bryson Jr., R. W., Smith, B. t., Nieto-Montes de Oca, A., Garcia-Vazquez, U. O., & Riddle, B. R. (2014). The role of mitochondrial introgression in illuminating the evolutionary history of Neartic treefrogs. Zoological Journal of the Linnean Society, 172, 103–116.

    Article  Google Scholar 

  • Burgin, C. J., Colella, J. P., Kahn, P. L., & Uphan, N. S. (2018). How many species of mammals are there? Journal of Mammalogy, 99(1), 1–14.

    Article  Google Scholar 

  • Castresana, J. (2001). Cytochrome b phylogeny and the taxonomy of great apes and mammals. Molecular Biology and Evolution, 18, 465–471.

    Article  CAS  PubMed  Google Scholar 

  • Corbet, G. B. (1978). The mammals of the Palaearctic region: a taxonomic review. London: British Museum (Natural History).

    Google Scholar 

  • De Bruijn, H., Dawson, M. R., & Mein, P. (1970). Upper Pliocene Rodentia, Lagomrpha and Insectivora (Mammalia) from the Isle of Rhodes (Greece). I. The Rodentia. Koninklijke Nederlandse Akademie van Wetenschappen, Ser B, 73(5), 535–575.

    Google Scholar 

  • Dianat, M., Darvish, J., Aliabadian, M., Haddadian, H., Khajeh, A., & Nicolas, V. (2016). Integrative taxonomy of Meriones persicus (Rodentia, Gerbillinae) in Iran. Iranian Journal of Animal Biosystematics, 12(1), 77–95.

    Google Scholar 

  • Dianat, M., Darvish, J., Cornette, R., Aliabadian, M., & Nicolas, V. (2017). Evolutionary history of the Persian jird, Meriones persicus, based on genetics, species distribution modelling and morphometric data. Journal of Zoological Systematics and Evolutionary Research, 55(1), 29–45.

    Article  Google Scholar 

  • Drummond, A. J., Rambaut, A. & Suchard, M. A. (2010). BEAST version 1.6.1. http://beast.bio.ed.ac.uk.

  • Dubey, S., Cosson, J. F., Magnanou, E., Vohralik, V., Benda, P., Frynta, D., et al. (2007). Mediterranean populations of the lesser white-toothed shrew (Crocidura suaveolens group): an unexpected puzzle of Pleistocene survivors and prehistoric introductions. Molecular Ecology, 16, 3438–3452.

    Article  CAS  PubMed  Google Scholar 

  • Dutrillaux, B., Couturier, J., Muleris, M., Lombard, M., & Chauvier, G. (1982). Chromosomal phylogeny of forty-two species of Cerecopithecoids (Primates Catarrhini). Annales de Génétique, 25, 96–109.

    CAS  PubMed  Google Scholar 

  • Ellerman, J.R. (1961). Mammalia: Rodentia. Fauna of India including Pakistan, Burma, and Ceylon. Manager of Publications, Zoological Surveys of India, 3 (in 2 parts), 1, 1–482; 483–884.

  • Eskandarzadeh, N., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Fathinia, B., Bahmani, Z., Hamidi, K., & Gholamifard, A. (2018). Annotated checklist of the endemic tetrapoda species of Iran. Zoosystema, 40(24), 507–537.

    Google Scholar 

  • Gatesy, J., Milinkovitch, M., Waddell, V., & Stanhope, M. (1999). Stability of cladistic relationships between Cetacea and higher-level artiodactyl taxa. Systematic Biology, 48, 6–20.

    Article  CAS  PubMed  Google Scholar 

  • Girdler, R. W. (1984). The evolution of the Gulf of Aden and Red Sea in space and time. Deep-Sea Research, Part A, 31, 747–762.

    Article  Google Scholar 

  • Good, J. M., Hird, S., Reid, N., Demboski, J. R., Steppan, S. J., Martin-Nims, T. R., et al. (2008). Ancient hybridization and mitochondrial capture between two species of chipmunks. Molecular Ecology, 17, 1313–1327.

    Article  CAS  PubMed  Google Scholar 

  • Graphodatsky, A. S., Radjabli, S. I., Meyer, M. N., & Malikov, V. G. (1989). Comparative cytogenetics of the genus Calomyscus (Rodentia, Cricetidae). Zoologischeskii Zhurnal, 68, 151–157 (in Russian).

    Google Scholar 

  • Graphodatsky, A. S., Sablina, O. V., Meyer, M. N., Malikov, V. G., Isakova, E. A., Trifonov, V. A., Polyakov, A. V., Lushnikova, T. P., Vorobieva, N. V., Serdyukova, N. A., Perelman, P. L., Borodin, P. M., Benda, P., Frynta, D., Leikepová, L., Munclinger, P., Piálek, J., Sádlová, J., & Zima, J. (2000). Comparative cytogenetics of hamsters of the genus Calomyscus. Cytogenetics and Cell Genetics, 88, 296–304.

    Article  CAS  PubMed  Google Scholar 

  • Haddadian-Shad, H., Darvish, J., Rastegar-Pouyani, E., & Mahmoudi, A. (2016). Subspecies differentiation of the house mouse Mus musculus Linnaeus, 1758 in the center and east of the Iranian plateau and Afghanistan. Mammalia, 81, 147–168.

    Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9 pp.

  • Hashemi, N., Darvish, J., Mashkour, M., & Biglari, F. (2006). Rodents and lagomorphs remains from late Pleistocene and early Holocene caves and rochshelter sites in the Zagros region, Iran. Iranian Journal of Animal Biosystematics, 2(1), 15–33.

    Google Scholar 

  • Ivanona, N. V., Dewaard, J. R., & Hebert, P. D. N. (2006). An inexpensive, 18 automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6, 998–1002.

  • IBM Corp. (2016). IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.

  • Jansa, S. A., & Weksler, M. (2004). Phylogeny of muroid rodents: relationship within and among major lineages as determined by IRBP gene sequences. Molecular Phylogenetics and Evolution, 31, 256–276.

    Article  CAS  PubMed  Google Scholar 

  • Karami, M., Huttere, R., Benda, P., Siahsaevie, R., & Krystufek, B. (2008). Annotated check-list of the mammals of Iran. Lynx, 39, 3–102.

    Google Scholar 

  • Karami, M., Ghadierian, T., & Faizolahi, K. (2016). The atlas of mammals of Iran. Karaj, Iran, Jahad daneshgahi, Kharazmi.

  • Kilpatrick, C. W. (2017). Family Calomyscidae (brush-tailed mice). Pp. 144–155. In Handbook of mammals of the world, Vol. 7. Rodents II (D. E. Wilson, T. E. Lacher, Jr., and R. A. Mittermeier, Eds.). Lynx Edicions, Barcelona, Spain.

  • Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resourse, 11, 353–357.

    Article  Google Scholar 

  • Koepfli, K. P., & Wayne, R. K. (2003). Type I STS markers are more informative than cytochrome b in phylogenetic reconstruction of the Mustelidae (Mammalia: Carnivora). Systematic Biology, 52, 571–593.

    Article  PubMed  Google Scholar 

  • Kryštufek, B. and Vohralík, V. (2009). Mammals of Turkey and Cyprus. Rodentia II: Cricetinae, Muridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae, Castoridae. Zgodovinsko društvo za južno Primorsko, Koper, Slovenia. University of Primorska, Science and Research Centre Koper, Koper, Slovenia. pp. 371.

  • Kryšufek, B., Klenovsek, T., Amori, G., & Janzekovic, F. (2015). Captured in ‘continental archipelago’: phylogenetic and environmental framework of cranial variation in the European snow vole. Journal of Zoology, 297(4), 270–277.

    Article  Google Scholar 

  • Lanfear, R., Calcott, B., Ho, S. Y. M., & Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.

    Article  CAS  PubMed  Google Scholar 

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773.

    CAS  PubMed  Google Scholar 

  • Lebedev, V. S., Pavlinov, I. Y., Meyer, M. N., & Malikov, V. G. (1998). Craniometric analysis of mouse-like hamsters of the genus Calomyscus (Cricetidae). Zoologicheskiĭ Zhurnal, 6, 721–731 (in Russian).

    Google Scholar 

  • Leigh, J. W., & Bryant, D. (2015). PopART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116.

    Article  Google Scholar 

  • Lemen, C. L. (1983). The effectiveness of methods of shape analysis. Fieldiana Zoology, 15, 1–17.

    Google Scholar 

  • Leturmy, P., & Robin, C. (2010). Tectonic and stratigraphic evolution of Zagros and Makran during the Mezozoic-Cenozoic. London: Geological Society, 330, 1–4.

    Google Scholar 

  • Levene, H. (1960). Robust tests for equality of variance. In Contributions to robability and statistics: essays in honor of Harold Hotelling. Stanford University Press, 278–292.

  • Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Macey, J. R., Schutle II, J. A., Ananjeva, N. B., Larson, A., Rastegar-Pouyani, N., Shammakov, S. M., & Papenfuss, T. J. (1998). Phylogenetic relationships among agamid lizards of the Laudakia caucasia species group: testing hypotheses of biogeographic fragmentation and an area cladogram for the Iranian Plateau. Molecular Phylogeny and Evolution, 10, 118–131.

    Article  CAS  Google Scholar 

  • Malikov, V. G., Meyer, M. N., Graphodatsky, A. S., Polyakov, A. V., Sablina, O. V., Vaziri, A., et al. (1999). On a taxonomic position of some karyomorphs belonging to genus Calomyscus (Rodentia, Cricetidae). Proceedings of the Zoological Institute RAS, 281, 27–32.

  • Meyer, M. N., & Malikov, V. G. (2000). New species and subspecies of mouse-like hamsters of the genus Calomyscus (Rodentia, Cricetidae) from southern Turkmenistan. Zoologischeskii Zhurnal, 79, 219–223 (in Russian).

    Google Scholar 

  • Michaux, J., Reyes, A., & Catzeflis, F. (2001). Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Molecular Biology and Evolution, 18, 2017–2031.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi, Z., Darvish, J., Ghorbani, F., & Haddad, F. (2013). Cytogenetic characterization of 23 species of rodents from Iran. Iranian Journal of Animal Biosystematics, 9, 57–72.

    Google Scholar 

  • Montgelard, C., Bentz, S., Tirard, C., Verneau, O., & Catzefflis, F. M. (2002). Molecular systematics of Sciurognathi (Rodentia): the mitochondrial cytochrome b and 12S rRNA genes support the Anomaluroidea (Peptidae and Anomaluridae). Molecular Phylogenetics and Evolution, 22, 220–233.

    Article  CAS  PubMed  Google Scholar 

  • Morshed, S., & Patton, J. L. (2002). New records of mammals from Iran with systematic comments on hedgehogs (Erinaceidae) and mouse-like hamsters (Calomyscus, Muridae). Zoology in the Middle East, 26, 49–58.

    Article  Google Scholar 

  • Musser, G. G., & Carleton, M. D. (2005). Subfamily Murinae. In D. E. Wilson & D. M. Reeder (Eds.), Mammal species of the world, a taxonomic and geographic reference. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Navia, D., Ferreira, C. B., Reis, A. C., & Gondim Jr., M. G. (2015). Traditional and geometric morphometrics supporting the differentiation of two new Retracrus (Phytoptidae) species associated with heliconias. Experimental and Applied Acarology, 67(1), 87–121.

    Article  PubMed  Google Scholar 

  • Norris, R. W., Woods, C. A., & Kilpatrick, C. W. (2008). Morphological and molecular definition of Calomyscus hotsoni (Rodentia: Muroidea: Calomyscus). Journal of Mammalogy, 89, 306–315.

    Article  Google Scholar 

  • Parada, A., Pardinas, U. F. J., Salazar-Bravo, J., D’Elia, G., & Palma, E. (2013). Dating an impressive neotropical radiation: molecular time estimates for the Sigmodontinae (Rodentia) provide insights into its historical biogeography. Molecular Phylogenetics and Evolution, 66, 960–968.

    Article  PubMed  Google Scholar 

  • Pavlinov, IYa, Yakhontov, E. L. & Agadzhanyan, A. K. (1995). [Mammals of Eurasia. I. Rodentia. Taxonomic and geographic guide.] Archives of the Zoological Museum, Moscow State University, 32, 289 pp. (in Russian).

  • Perea, S., Vukić, J., Sˇanda, R., & Doadrio, I. (2016). Ancient mitochondrial capture as factor promoting mitonuclear discordance in freshwater fishes: a case study in the genus Squalius (Actinopterygii, Cyprinidae) in Greece. PLoS One, 11(12), 1–27.

    Article  CAS  Google Scholar 

  • Peshev, D. (1991). On the systematic position of the mouse-like hamster Calomyscus bailwardi Thomas, 1905 (Cricetidae, Rodentia) from the Near East and Middle Asia. Mammalia, 55, 107–112.

    Article  Google Scholar 

  • Rajabi-Maham, H., Orth, A., & Bonhomme, F. (2008). Phylogeography and postglacial expansion of Mus musculus domesticus inferred from mitochondrial DNA coalescent, from Iran to Europe. Molecular Ecolology, 17, 627–641.

    Article  CAS  Google Scholar 

  • Rambaut, A., Suchard, M. A., **e, W., & Drummond, A. J. (2013). Tracer version 1.6.0. Edinburgh: University of Edinburgh.

    Google Scholar 

  • Rohlf, F. J. (2013). TPSdig, v. 2.17. Stony Brook, Department of Ecology and Evolution, State University of New York, New York.

  • Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systems Biology, 39, 40–59.

    Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Schenk, J. J., Rowe, K. C., & Steppan, S. J. (2013). Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Systematic Biology, 62, 837–864.

    Article  PubMed  Google Scholar 

  • Schlitter, D. A., & Setezer, H. W. (1973). New rodents (Mammalia: Cricetidae, Muridae) from Iran and Pakistan. Proceedings of the Biological Society of Washington, 86, 163–174.

    Google Scholar 

  • Shahabi, S., Zarei, B., & Sahebjam, B. (2010). Karyologic study of three species of Calomyscus (Rodentia: Calomyscidae) from Iran. Iranian Journal of Animal Biosystematic, 6, 55–60.

    Google Scholar 

  • Shahabi, S., Darvish, J., Aliabadian, M., Mirshamsi, O., & Mohammadi, Z. (2011). Cranial and dental analysis of mouse-like hamsters of the genus Calomyscus (Rodentia: Calomyscidae) from plateau of Iran. Hystrix Italian Journal of Mammalogy, 22, 311–323.

    Google Scholar 

  • Shahabi, S., Aliabadian, M., Darvish, J., & Kilpatrick, C. W. (2013). Molecular phylogeny of brush-tailed mice of the genus Calomyscus (Rodentia: Calomyscidae) inferred from mitochondrial DNA sequences. Mammalia, 77, 425–431.

    Article  Google Scholar 

  • Shaw, K. L. (2001). The genealogical view of speciation. Journal of Evolutionary Biology, 14, 880–882.

    Article  Google Scholar 

  • Song, Y., Lan, Z., & Kohn, M. H. (2014). Mitochondrial DNA phylogeography of the Norway rat. PLoS One, 9(2), e88425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Springer, M. S., Burk, A., Kavanagh, J. R., Waddell, V. G., & Stanhope, M. J. (1997). The interphotoreceptor retinoid binding protein gene in therian mammals: Implications for higher level relationships and evidence for loss of function in the marsupial mole. Proceedings of the National Academy of Sciences of the United States of America, 94, 13754–13759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer, M. S., Amrine, H. M., Burk, A., & Stanhope, M. J. (1999). Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Systems Biology, 48, 65–75.

    Article  CAS  Google Scholar 

  • Stanhope, M. J., Czelusniak, J., Si, J.-S., Nickerson, J., & Goodman, M. (1992). A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Molecular Phylogeny and Evolution, 1, 148–160.

    Article  CAS  Google Scholar 

  • Stanhope, M. J., Smith, M. R., Waddell, V. G., Porter, C. A., Shivji, M. S., & Goodman, M. (1996). Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: convincing evidence for several superordinal clades. Journal of Molecular Evolution, 43, 83.

    Article  CAS  PubMed  Google Scholar 

  • Steppan, S. J., & Schenk, J. J. (2017). Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS One, 12(8), e0183070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steppan, S. J., Adkins, R. M., & Anderson, J. (2004). Phylogeny and divergence—date estimates of rapid radiation in muroid rodents based on multiple nuclear genes. Systematic Biology, 53, 533–553.

    Article  PubMed  Google Scholar 

  • Stoetzel, E., Cornette, R., Lalis, A., Nicolas, V., Cucchi, T., & Denys, C. (2017). Systematics and evolution of the Meriones shawii/grandis complex (Rodentia, Gerbillinae) during the Late Quaternary in northwestern Africa: exploring the role of environmental and anthropogenic changes. Quaternary Science Reviews, 164, 199–216.

    Article  Google Scholar 

  • Sun, J. M., Gong, Z. J., Tian, Z. H., Jia, Y. Y., & Windley, B. (2015). Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate. Palaeogeography, Paleoclimatology, Paleoecology, 421, 48–59.

    Article  Google Scholar 

  • Tabatabaei Yazdi, F., & Adriaens, D. (2011). Patterns of phenotypic skull variation in Meriones persicus (Rodentia: Muridae) in relation to geoclimatical conditions. Iranian Journal of Animal Biosystematic, 7, 129–142.

    Google Scholar 

  • Tabatabaei Yazdi, F., & Adriaens, D. (2013). Cranial variation in Meriones tristrami (Rodentia: Muridae: Gerbillinae) and its morphological comparison with Meriones persicus, Meriones vinogradovi and Meriones libycus: a geometric morphometric study. Journal of Zoological Systematics and Evolutionary Research, 51, 239–251.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, O. (1905). On a collection of mammals from Persia and Armenia presented to the British Museum by Col. A. C. Bailward. Proceedings of the Zoological Society of London, 1905(2), 519–527.

    Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequences alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobe, S. S., Kitchener, A. C., & Linacre, A. M. T. (2010). Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. PLoS One, 5(11), e14156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong, H. (1989). Origine et evolution des Gerbillidae (Mammalia, Rodentia) en Afrique du Nord. Memoires la Societe Geologique Fr. N, 155, 120.

    Google Scholar 

  • Vorontsov, N. N., & Potapove, E. G. (1979). Taxonomy of the genus Calomyscus (Cricetindae), 2. Status of Calomyscus in the system of Cricetinae. Zoologicheskiĭ Zhurnal, 58, 1391–1397 (in Russian).

    Google Scholar 

  • Vorontsov, N. N., Kartavtesva, I. V., & Potapova, E. G. (1979). Systematics of the genus Calomyscus. Karyological differentiation of the sibling species from Transcaucasia and Turkmenia and a review of species of the genus Calomyscus. Zoologicheskiĭ Zhurnal, 58, 1215–1224 (in Russian).

    Google Scholar 

  • Wessels, W. (1998). Gerbillidae from the Miocene and Pliocene of Europe. Mitteilungen. Bayerische Staatssammlung für Paläontologie und Historische Geologie, 38, 187–207.

    Google Scholar 

  • Yosida, T. H. (1973). Evolution of karyotypes and differentiation in 13 Rattus species. Chromosoma, 40(3), 285–297.

    Article  Google Scholar 

  • Yusefl, G. H., Faizolahi, K., Darvish, J., Safi, K., & Brito, J. C. (2019). The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. Journal of Mammalogy, 100(1), 55–71.

    Article  Google Scholar 

  • Zheng, Y., Peng, X., Liu, G., Pan, H., Dorn, S., & Chen, M. (2013). High genetic diversity and structured populations of the oriental fruit moth in its range of origin. PLoS One, 8(11), e78476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Reza Sadeghi who have assisted during fieldworks. Also thanks to Hessam Zali for providing some samples. Anonymous reviewers are acknowledged, whose comments contributed to the improvement of the manuscript.

Funding

This work was supported by Project No. 3.39878 in Ferdowsi University of Mashhad in Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Aliabadian.

Ethics declarations

Sampling was performed after approval by the Department of Environment of Iran (agreement number: 93/340). All experiments were carried out according to the directive 2010/63/EEC on the Protection of Animals Used for Experimental and Other Scientific Purposes (protocol available on http://www.ceropath.org/references/rodent_protocols_book).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Resource 1

Bayesian tree resulted from data set of CO1 gene. Posterior probability values from the Bayesian analysis are indicated by asterisk at the > 99% (**) and > 95% (*) significance levels. Numbers on branch indicate posterior probability values (PNG 2207 kb)

High Resolution Image (TIFF 1291 kb)

Online Resource 2

Bayesian tree resulting from data set of combined two mitochondrial Cyt b and CO1 genes. Posterior probability values from the Bayesian analysis are indicated by asterisk at the > 99% (**) significance level. Numbers on branch indicate posterior probability (values greater than 50% was shown) (PNG 224 kb)

High Resolution Image (TIF 548 kb)

Online Resource 3

Bayesian tree resulting from data set of combined two mitochondrial, Cyt b and CO1, and one nuclear, Rbp3, genes. Posterior probability values from the Bayesian analysis are indicated by asterisk at the > 99% (**) significance level. Numbers on branch indicate posterior probability (values greater than 50% was shown) (PNG 262 kb)

High Resolution Image (TIF 476 kb)

Online Resource 4

Median-joining haplotype network of nuclear Rbp3 gene of the genus Calomyscus. Circle sizes are proportional to the number of the same haplotypes observed in the data set; Black circles represent extinct or unsampled haplotypes. Numbers between haplotypes represent mutational steps between haplotypes (PNG 1426 kb)

High Resolution Image (TIFF 693 kb)

Online Resource 5

Skull centroid size variability among ten groups for ventral view of skull. Symbols and whiskers show means and standard deviations; 1- C. grandis; 2- Calomyscus sp. Group G; 3- C. elburzensis; 4- C. bailwardi; 5- Calomyscus sp. Group C; 6- C. hotsoni; 7- C. urartensis;8- Calomyscus sp. Group D; 9- C. cf. bailwardi Group B; 10- C. mystax (PNG 141 kb)

High Resolution Image (TIF 694 kb)

Online Resource 6

Mahalanobis distances between pairs of groups. *: indicated the significant separation between groups (p < 0.0001) (DOCX 14 kb)

Online Resource 7

Summary of Tukey test (ANOVA) of morphometric comparison of C. grandis (1) and Calamyscus sp. Group G (2) with other groups. Values in bold are statistically significant (P < 0.05) (DOCX 22 kb)

Online Resource 8

Median-joining haplotype network of Cyt b gene of C. grandis and Calomyscus sp. Group G. Circle size is relative to haplotype frequency; Black circles represent extinct or unsampled haplotypes. Numbers indicates the number of mutations between haplotypes (PNG 928 kb)

High Resolution Image (TIFF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezazadeh, E., Aliabadian, M., Darvish, J. et al. Diversification and evolutionary history of brush-tailed mice, Calomyscidae (Rodentia), in southwestern Asia. Org Divers Evol 20, 155–170 (2020). https://doi.org/10.1007/s13127-019-00426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-019-00426-y

Keywords

Navigation