Log in

Non-local tensor sparse representation and tensor low rank regularization for dynamic MRI reconstruction

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Dynamic Magnetic Resonance Imaging (DMRI) reconstruction is a challenging theme in image processing. A variety of dimensionality reduction methods using vectorization have been proposed. However, most of them gave rise to a loss of spatial and temporal information. To deal with this problem, this article develops a DMRI reconstruction method in a nonlocal framework by integrating the nonlocal sparse tensor with low-rank tensor regularization. The sparsity constraint employs the Tucker decomposition tensor sparse representation, and the t-product-based tensor nuclear norm is used to set the low-rank constraint. Both constraints are handled in a nonlocal framework, which can take advantage of data redundancy in DMRI. Furthermore, the nonlocal sparse tensor representation we proposed constructs a tensor dictionary in the spatio-temporal dimension, making sparsity more efficient. Consequently, our method can better exploit the multi-dimensional coherence of DMRI data due to its sparsity and lowrankness and the fact that it uses a different tensor decomposition-based method. The Alternating Direction Method of Multipliers (ADMM) has been used for optimization. Experimental results show that the performance of the proposed method is superior to several conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, upon reasonable request.

References

  1. Donoho DL et al (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  2. Pauly JM (2008) Compressed sensing MRI. Signal Process Mag IEEE 25(2):72–82

    Article  Google Scholar 

  3. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195

    Article  Google Scholar 

  4. M. Lustig, J. M. Santos, D. L. Donoho, and J. M. Pauly 2006 kt sparse: High frame rate dynamic mri exploiting spatio-temporal sparsity. In: Proceedings of the 13th annual meeting of ISMRM, Seattle. vol. 2420,

  5. Jung H, Sung K, Nayak KS, Kim EY, Ye JC (2009) k-t focuss: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61(1):103–116

    Article  Google Scholar 

  6. Montefusco LB, Lazzaro D, Papi S, Guerrini C (2010) A fast compressed sensing approach to 3d MR image reconstruction. IEEE Trans Med Imaging 30(5):1064–1075

    Article  Google Scholar 

  7. Yang J, Zhang Y, Yin W (2008) A fast tvl1-l2 minimization algorithm for signal reconstruction from partial fourier data. Tech Rep. https://hdl.handle.net/1911/102105. Accessed 20 Dec 2017

  8. Lai Z, Qu X, Liu Y, Guo D, Ye J, Zhan Z, Chen Z (2016) Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal 27:93–104

    Article  Google Scholar 

  9. Ravishankar S, Bresler Y (2010) MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging 30(5):1028–1041

    Article  Google Scholar 

  10. Caballero J, Price AN, Rueckert D, Hajnal JV (2014) Dictionary learning and time sparsity for dynamic MR data reconstruction. IEEE Trans Med Imaging 33(4):979–994

    Article  Google Scholar 

  11. Lingala SG, Jacob M (2013) Blind compressive sensing dynamic MRI. IEEE Trans Med Imaging 32(6):1132–1145

    Article  Google Scholar 

  12. Quan TM, Nguyen-Duc T, Jeong W-K (2018) Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 37(6):1488–1497

    Article  Google Scholar 

  13. J. Schlemper, J. Caballero, J. V. Hajnal, A. Price, D. Rueckert (2017) A deep cascade of convolutional neural networks for mr image reconstruction, in Information Processing in Medical Imaging: 25th International Conference, IPMI (2017) Boone, NC, USA, June 25–30, 2017, Proceedings 25. Springer. p 647–658

  14. Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D (2018) Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 38(1):280–290

    Article  Google Scholar 

  15. Aggarwal HK, Mani MP, Jacob M (2018) Modl: model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging 38(2):394–405

    Article  Google Scholar 

  16. Huang J, Fang Y, Wu Y, Wu H, Gao Z, Li Y, Del Ser J, **a J, Yang G (2022) Swin transformer for fast MRI. Neurocomputing 493:281–304

    Article  Google Scholar 

  17. Dong W, Shi G, Li X, Ma Y, Huang F (2014) Compressive sensing via nonlocal low-rank regularization. IEEE Trans Image Process 23(8):3618–3632

    Article  MathSciNet  Google Scholar 

  18. Eksioglu EM (2016) Decoupled algorithm for MRI reconstruction using nonlocal block matching model: Bm3d-MRI. J Math Imaging Vision 56(3):430–440

    Article  MathSciNet  Google Scholar 

  19. J. Ai, S. Ma, H. Du, and L. Fang (2018) Dynamic MRI reconstruction using tensor-svd. In: 2018 14th IEEE International Conference on Signal Processing (ICSP). IEEE. pp. 1114–1118

  20. He J, Liu Q, Christodoulou AG, Ma C, Lam F, Liang Z-P (2016) Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors. IEEE Trans Med Imaging 35(9):2119–2129

    Article  Google Scholar 

  21. Yu Y, ** J, Liu F, Crozier S (2014) Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform. PLoS One 9(6):e98441

    Article  Google Scholar 

  22. S. F. Roohi, D. Zonoobi, A. A. Kassim, and J. L. Jaremko (2016) Dynamic MRI reconstruction using low rank plus sparse tensor decomposition. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE. p 1769–1773

  23. R. Ramb, M. Zenge, L. Feng, M. Muckley, C. Forman, L. Axel, D. Sodickson, and R. Otazo, Low-rank plus sparse tensor reconstruction for high-dimensional cardiac mri, in Proc. ISMRM, vol. 1199, 2017

  24. Otazo R, Candes E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 73(3):1125–1136

    Article  Google Scholar 

  25. Yang X, Luo Y, Chen S, Zhen X, Yu Q, Liu K (2017) Dynamic MRI reconstruction from highly undersampled (k, t)-space data using weighted schatten p-norm regularizer of tensor. Magn Reson Imaging 37:260–272

    Article  Google Scholar 

  26. S. Wu, Y. Liu, T. Liu, F. Wen, S. Liang, X. Zhang, S. Wang, and C. Zhu (2018) Multiple low-ranks plus sparsity based tensor reconstruction for dynamic MRI. In: 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). IEEE. p 1–5

  27. Usman M, Prieto C, Schaeffter T, Batchelor P (2011) k-t group sparse: a method for accelerating dynamic MRI. Magn Reson Med 66(4):1163–1176

    Article  Google Scholar 

  28. Afonso MV, Bioucas-Dias JM, Figueiredo MA (2010) An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans Image Process 20(3):681–695

    Article  MathSciNet  Google Scholar 

  29. Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500

    Article  MathSciNet  Google Scholar 

  30. N. Qi, Y. Shi, X. Sun, and B. Yin (2016) Tensr: Multi-dimensional tensor sparse representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. p 5916–5925

  31. Caiafa CF, Cichocki A (2013) Computing sparse representations of multidimensional signals using kronecker bases. Neural Comput 25(1):186–220

    Article  MathSciNet  Google Scholar 

  32. Zhang Z, Aeron S (2015) Denoising and completion of 3d data via multidimensional dictionary learning. ar**v:1512.09227. Accessed 12 Oct 2018

  33. Liu J, Musialski P, Wonka P, Ye J (2012) Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 35(1):208–220

    Article  Google Scholar 

  34. Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer (2014) Novel methods for multilinear data completion and de-noising based on tensor-svd. In: Proceedings of the IEEE conference on computer vision and pattern recognition. p 3842–3849

  35. Kilmer ME, Martin CD (2011) Factorization strategies for third-order tensors. Linear Algebra Appl 435(3):641–658

    Article  MathSciNet  Google Scholar 

  36. Semerci O, Hao N, Kilmer ME, Miller EL (2014) Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Trans Image Process 23(4):1678–1693

    Article  MathSciNet  Google Scholar 

  37. A. Buades, B. Coll, and J.-M. Morel (2005) A non-local algorithm for image denoising, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2. IEEE. p 60–65

  38. Qi N, Shi Y, Sun X, Wang J, Yin B, Gao J (2017) Multi-dimensional sparse models. IEEE Trans Pattern Anal Mach Intell 40(1):163–178

    Article  Google Scholar 

  39. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of psnr in image/video quality assessment. Electron Lett 44(13):800–801

    Article  Google Scholar 

  40. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  41. Yao J, Xu Z, Huang X, Huang J (2018) An efficient algorithm for dynamic MRI using low-rank and total variation regularizations. Med Image Anal 44:14–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minan Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, M., Zhang, G. Non-local tensor sparse representation and tensor low rank regularization for dynamic MRI reconstruction. Int. J. Mach. Learn. & Cyber. 15, 493–503 (2024). https://doi.org/10.1007/s13042-023-01921-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-023-01921-7

Keywords

Navigation