Log in

MYPT1SMKO Mice Function as a Novel Spontaneous Age- and Hypertension-Dependent Animal Model of CSVD

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Cerebral small vessel disease (CSVD) is the most common progressive vascular disease that causes vascular dementia. Aging and hypertension are major contributors to CSVD, but the pathophysiological mechanism remains unclear, mainly due to the lack of an ideal animal model. Our previous study revealed that vascular smooth muscle cell (VSMC)-specific myosin phosphatase target subunit 1 (MYPT1) knockout (MYPT1SMKO) leads to constant hypertension, prompting us to explore whether hypertensive MYPT1SMKO mice can be considered a novel CSVD animal model. Here, we found that MYPT1SMKO mice displayed age-dependent CSVD-like neurobehaviors, including decreased motion speed, anxiety, and cognitive decline. MYPT1SMKO mice exhibited remarkable white matter injury compared with control mice, as shown by the more prominent loss of myelin at 12 months of age. Additionally, MYPT1SMKO mice were found to exhibit CSVD-like small vessel impairment, including intravascular hyalinization, perivascular space enlargement, and microbleed and blood-brain barrier (BBB) disruption. Last, our results revealed that the brain of MYPT1SMKO mice was characterized by an exacerbated inflammatory microenvironment, which is similar to patients with CSVD. In light of the above structural and functional phenotypes that closely mimic the conditions of human CSVD, we suggest that MYPT1SMKO mice are a novel age- and hypertension-dependent animal model of CSVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed in this study are available from the corresponding author upon reasonable request.

References

  1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701. https://doi.org/10.1016/S1474-4422(10)70104-6.

    Article  PubMed  Google Scholar 

  2. Gorelick, P.B., et al., Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke, 2011. 42(9): p. 2672-2713. https://doi.org/10.1161/STR.0b013e3182299496

  3. de Leeuw FE, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry. 2001;70(1):9–14. https://doi.org/10.1136/jnnp.70.1.9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mustapha M, et al. Cerebral small vessel disease (CSVD) - lessons from the animal models. Front Physiol. 2019;10:1317. https://doi.org/10.3389/fphys.2019.01317.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kaiser D, et al. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol Commun. 2014;2:169. https://doi.org/10.1186/s40478-014-0169-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bailey EL, et al. Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week-old rats. Neuropathol Appl Neurobiol. 2011;37(7):711–26. https://doi.org/10.1111/j.1365-2990.2011.01170.x.

    Article  CAS  PubMed  Google Scholar 

  7. Hannawi Y, et al. Characterizing the neuroimaging and histopathological correlates of cerebral small vessel disease in spontaneously hypertensive stroke-prone rats. Front Neurol. 2021;12:740298. https://doi.org/10.3389/fneur.2021.740298.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yamagata K, Tagami M, Yamori Y. Neuronal vulnerability of stroke-prone spontaneously hypertensive rats to ischemia and its prevention with antioxidants such as vitamin E. Neuroscience. 2010;170(1):1–7. https://doi.org/10.1016/j.neuroscience.2010.07.013.

    Article  CAS  PubMed  Google Scholar 

  9. Meneses A, et al. Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Rev Neurosci. 2011;22(3):365–71. https://doi.org/10.1515/RNS.2011.024.

    Article  CAS  PubMed  Google Scholar 

  10. Shibata M, et al. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke. 2004;35(11):2598–603. https://doi.org/10.1161/01.STR.0000143725.19053.60.

    Article  PubMed  Google Scholar 

  11. Yang Y, et al. Rodent models of vascular cognitive impairment. Transl Stroke Res. 2016;7(5):407–14. https://doi.org/10.1007/s12975-016-0486-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Joutel A, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest. 2010;120(2):433–45. https://doi.org/10.1172/JCI39733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruchoux MM, et al. Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol. 2003;162(1):329–42. https://doi.org/10.1016/S0002-9440(10)63824-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wallays G, et al. Notch3 Arg170Cys knock-in mice display pathologic and clinical features of the neurovascular disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Arterioscler Thromb Vasc Biol. 2011;31(12):2881–8. https://doi.org/10.1161/ATVBAHA.111.237859.

    Article  CAS  PubMed  Google Scholar 

  15. Cannistraro RJ, et al. CNS small vessel disease: a clinical review. Neurology. 2019;92(24):1146–56. https://doi.org/10.1212/WNL.0000000000007654.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Qiao YN, et al. Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure. J Biol Chem. 2014;289(32):22512–23. https://doi.org/10.1074/jbc.M113.525444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He WQ, et al. Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1. Gastroenterology. 2013;144(7):1456–65. https://doi.org/10.1053/j.gastro.2013.02.045.

    Article  CAS  PubMed  Google Scholar 

  18. Gebara E, et al. Mitofusin-2 in the nucleus accumbens regulates anxiety and depression-like behaviors through mitochondrial and neuronal actions. Biol Psychiatry. 2021;89(11):1033–44. https://doi.org/10.1016/j.biopsych.2020.12.003.

    Article  CAS  PubMed  Google Scholar 

  19. Tao W, et al. miR-204-3p/Nox4 mediates memory deficits in a mouse model of Alzheimer’s disease. Mol Ther. 2021;29(1):396–408. https://doi.org/10.1016/j.ymthe.2020.09.006.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng L, et al. Pentoxifylline alleviates ischemic white matter injury through up-regulating Mertk-mediated myelin clearance. J Neuroinflammation. 2022;19(1):128. https://doi.org/10.1186/s12974-022-02480-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jenkinson M, et al. Fsl. Neuroimage. 2012;62(2):782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015.

    Article  PubMed  Google Scholar 

  22. Nie B, et al. A stereotaxic MRI template set of mouse brain with fine sub-anatomical delineations: Application to MEMRI studies of 5XFAD mice. Magn Reson Imaging. 2019;57:83–94. https://doi.org/10.1016/j.mri.2018.10.014.

    Article  PubMed  Google Scholar 

  23. Friston KJ. Commentary and opinion: II. Statistical parametric map**: ontology and current issues. J Cereb Blood Flow Metab. 1995;15(3):361–70. https://doi.org/10.1038/jcbfm.1995.45.

    Article  CAS  PubMed  Google Scholar 

  24. Yamazaki Y, et al. Vascular cell senescence contributes to blood-brain barrier breakdown. Stroke. 2016;47(4):1068–77. https://doi.org/10.1161/STROKEAHA.115.010835.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li HQ, et al. Gamma-glutamylcysteine alleviates ischemic stroke-induced neuronal apoptosis by inhibiting ROS-mediated endoplasmic reticulum stress. Oxid Med Cell Longev. 2021;2021:2961079. https://doi.org/10.1155/2021/2961079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su N, et al. The consequence of cerebral small vessel disease: linking brain atrophy to motor impairment in the elderly. Hum Brain Mapp. 2018;39(11):4452–61. https://doi.org/10.1002/hbm.24284.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Edrissi H, et al. Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion. Brain Res. 2016;1646:494–503. https://doi.org/10.1016/j.brainres.2016.06.036.

    Article  CAS  PubMed  Google Scholar 

  28. Rensma SP, et al. Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;90:164–73. https://doi.org/10.1016/j.neubiorev.2018.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Duering M, et al. Strategic role of frontal white matter tracts in vascular cognitive impairment: a voxel-based lesion-symptom map** study in CADASIL. Brain. 2011;134(Pt 8):2366–75. https://doi.org/10.1093/brain/awr169.

    Article  PubMed  Google Scholar 

  30. Nordahl CW, et al. Different mechanisms of episodic memory failure in mild cognitive impairment. Neuropsychologia. 2005;43(11):1688–97. https://doi.org/10.1016/j.neuropsychologia.2005.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen JF, et al. Oligodendrocytes and myelin: active players in neurodegenerative brains? Dev Neurobiol. 2022;82(2):160–74. https://doi.org/10.1002/dneu.22867.

    Article  PubMed  Google Scholar 

  32. Tan XL, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24. https://doi.org/10.1186/s13024-015-0020-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meng H, et al. Synthetic VSMCs induce BBB disruption mediated by MYPT1 in ischemic stroke. iScience. 2021;24(9):103047. https://doi.org/10.1016/j.isci.2021.103047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang DD, et al. Inflammatory biomarkers and cerebral small vessel disease: a community-based cohort study. Stroke Vasc Neurol. 2022. https://doi.org/10.1136/svn-2021-001102.

  35. Noz MP, et al. Trained immunity characteristics are associated with progressive cerebral small vessel disease. Stroke. 2018;49(12):2910–7. https://doi.org/10.1161/STROKEAHA.118.023192.

    Article  PubMed  Google Scholar 

  36. Verhaaren BF, et al. High blood pressure and cerebral white matter lesion progression in the general population. Hypertension. 2013;61(6):1354–9. https://doi.org/10.1161/HYPERTENSIONAHA.111.00430.

    Article  CAS  PubMed  Google Scholar 

  37. Wardlaw JM, et al. White matter hyperintensity reduction and outcomes after minor stroke. Neurology. 2017;89(10):1003–10. https://doi.org/10.1212/WNL.0000000000004328.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shan LL, et al. Association of serum interleukin-8 and serum amyloid a with anxiety symptoms in patients with cerebral small vessel disease. Front Neurol. 2022;13:938655. https://doi.org/10.3389/fneur.2022.938655.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42(11):3323–8. https://doi.org/10.1161/STROKEAHA.110.608257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wardlaw JM, et al. Blood-brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease. Stroke. 2013;44(2):525–7. https://doi.org/10.1161/STROKEAHA.112.669994.

    Article  PubMed  Google Scholar 

  41. De Silva TM, Miller AA. Cerebral small vessel disease: targeting oxidative stress as a novel therapeutic strategy? Front Pharmacol. 2016;7:61. https://doi.org/10.3389/fphar.2016.00061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guy R, et al. A novel rodent model of hypertensive cerebral small vessel disease with white matter hyperintensities and peripheral oxidative stress. Int J Mol Sci. 2022;23(11). https://doi.org/10.3390/ijms23115915.

  43. Liao FF, et al. Endothelial nitric oxide synthase-deficient mice: a model of spontaneous cerebral small-vessel disease. Am J Pathol. 2021;191(11):1932–45. https://doi.org/10.1016/j.ajpath.2021.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen CP, et al. In vivo roles for myosin phosphatase targeting subunit-1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction. J Physiol. 2015;593(3):681–700. https://doi.org/10.1113/jphysiol.2014.283853.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Feng Han and Meiling Sun from Nan**g Medical University in China for their help in the two-photon imaging analysis.

Funding

This study was funded by the National Natural Science Foundation of China (82130036, 81920108017), the National Science and Technology Innovation 2030—Major program of “Brain Science and Brain-Like Research” 2022ZD0211800, the Key Research and Development Program of Jiangsu Province of China (BE2020620). Jiangsu Province Key Medical Discipline (ZDXKA2016020).

Author information

Authors and Affiliations

Authors

Contributions

YX designed research; JC, C-GL, L-XY, YQ, L-WZ, and P-YL performed research; JC, L-XY, and C-GL analyzed data; M-SZ developed the mice; YW assisted with animal breed; JC, YX wrote the paper. YX and M-SZ revised the paper. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Min-Sheng Zhu or Yun Xu.

Ethics declarations

Ethics Approval

All the animal experiments were conducted according to institutional guidelines and were approved by the Animal Use and Care Committees at Nan**g University.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, CG., Yang, LX. et al. MYPT1SMKO Mice Function as a Novel Spontaneous Age- and Hypertension-Dependent Animal Model of CSVD. Transl. Stroke Res. 15, 606–619 (2024). https://doi.org/10.1007/s12975-023-01142-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-023-01142-8

Keywords

Navigation