Log in

Crystal Size Dependence of the Photo-Electrochemical Water Oxidation on Nanoparticulate CaTiO3

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Nanocrystalline CaTiO3 materials with controlled particle size were prepared using spray-freezing/freeze-drying approach utilizing gelatine as a structure-directing agent. The resulting materials show characteristic particle size between 19 and 60 nm. The shape of the nanocrystals changes from cube-like single crystal containing particles into less regular isometric particles. Prepared materials as identified by X-ray diffraction analysis are formed by orthorhombic perovskite with small admixture of cubic phase. The ratio of both perovskite phases is independent of the particle size or prevailing crystal shape. All prepared materials show n-semiconducting character with band gap of ca 3.6 eV. They also show photo-electrochemical activity in water oxidation in acid media if a bias greater than 400 mV with respect to the flat band potential is applied. The specific photo-electrochemical activity decreases with increasing specific surface area. This behavior is attributed to increased probability of the electron transfer at the illuminated CaTiO3 surface facilitated by the surface states. The CaTiO3 materials also generate significant amount of ozone upon illumination in oxygen saturated solutions. The tendency to form ozone increases with increasing particle size suggesting that the ozone formation is hindered on materials with large number of low dimensionality states (crystal edges and vertices).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q.D. Truong, T.H. Le, H.T. Hoa, Amino acid-assisted controlling the shapes of rutile, brookite for enhanced photocatalytic CO2 reduction. CrystEngComm. 19, 4519–4527 (2017). https://doi.org/10.1039/c7ce00566k

    Article  CAS  Google Scholar 

  2. A. Kumar, A. Kumar, V. Krishnan, Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal. 10253–10315 (2020). https://doi.org/10.1021/acscatal.0c02947

  3. S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50

    Article  CAS  Google Scholar 

  4. M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri, T.H. Jeon, W. Choi, A.Z. Moshfegh, Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 12, 59–95 (2019). https://doi.org/10.1039/c8ee00886h

    Article  CAS  Google Scholar 

  5. C. Ding, J. Shi, Z. Wang, C. Li, Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 7 (2017) 675–688. https://pubs.acs.org/doi/pdf/10.1021/acscatal.6b03107

  6. Y. Yan, H. Yang, Z. Yi, R. Li, X. Wang, Enhanced photocatalytic performance and mechanism of Au@CaTiO 3 composites with au nanoparticles assembled on CaTiO 3 nanocuboids. Micromachines 10, 1–16 (2019). https://doi.org/10.3390/mi10040254

    Article  Google Scholar 

  7. S.M. Fawzy, M.M. Omar, N.K. Allam, Photoelectrochemical water splitting by defects in nanostructured multinary transition metal oxides. Sol. Energy Mater. Sol. Cells. 194, 184–194 (2019). https://doi.org/10.1016/j.solmat.2019.02.011

    Article  CAS  Google Scholar 

  8. J. Jian, G. Jiang, R. van de Krol, B. Wei, H. Wang, Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano. Energy 51, 457–480 (2018). https://doi.org/10.1016/j.nanoen.2018.06.074

    Article  CAS  Google Scholar 

  9. F. Cai, T. Zhang, Q. Liu, P. Guo, Y. Lei, Y. Wang, F. Wang, One step synthesis of tetragonal-CuBi2O4/amorphous-bifeo3 heterojunction with improved charge separation and enhanced photocatalytic properties. Nanomaterials 10, 1–16 (2020). https://doi.org/10.3390/nano10081514

    Article  CAS  Google Scholar 

  10. F.F. Abdi, S.P. Berglund, Recent developments in complex metal oxide photoelectrodes. J. Phys. D. Appl. Phys. 50, 193002 (2017). https://doi.org/10.1088/1361-6463/aa6738

    Article  CAS  Google Scholar 

  11. W. Wang, M. Xu, X. Xu, W. Zhou, Z. Shao, Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angew. Chemie Int. Ed. 59, 136–152 (2020). https://doi.org/10.1002/anie.201900292

    Article  CAS  Google Scholar 

  12. C. Huang, Z. Li, Z. Zou, A perspective on perovskite oxide semiconductor catalysts for gas phase photoreduction of carbon dioxide. MRS Commun. 6, 216–225 (2016). https://doi.org/10.1557/mrc.2016.32

    Article  CAS  Google Scholar 

  13. A. Anzai, N. Fukuo, A. Yamamoto, H. Yoshida, Highly selective photocatalytic reduction of carbon dioxide with water over silver-loaded calcium titanate. Catal. Commun. 100, 134–138 (2017). https://doi.org/10.1016/j.catcom.2017.06.046

    Article  CAS  Google Scholar 

  14. R. Shi, G.I.N. Waterhouse, T. Zhang, Recent progress in photocatalytic CO2 reduction over perovskite oxides. Sol. RRL. 1, 1700126 (2017). https://doi.org/10.1002/solr.201700126

    Article  CAS  Google Scholar 

  15. Y. Yan, H. Yang, Z. Yi, R. Li, T. **an, Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation. Solid State Sci. 100, 106102 (2020). https://doi.org/10.1016/j.solidstatesciences.2019.106102

    Article  CAS  Google Scholar 

  16. M. Kitano, J. Kujirai, K. Ogasawara, S. Matsuishi, T. Tada, H. Abe, Y. Niwa, H. Hosono, Low-temperature synthesis of perovskite oxynitride-hydrides as ammonia synthesis catalysts. J. Am. Chem. Soc. 141, 20344–20353 (2019). https://doi.org/10.1021/jacs.9b10726

    Article  CAS  PubMed  Google Scholar 

  17. M. Moniruddin, B. Ilyassov, X. Zhao, E. Smith, T. Serikov, N. Ibrayev, R. Asmatulu, N. Nuraje, Recent progress on perovskite materials in photovoltaic and water splitting applications. Mater. Today Energy 7, 246–259 (2018). https://doi.org/10.1016/j.mtener.2017.10.005

    Article  Google Scholar 

  18. B. Modak, P. Modak, S.K. Ghosh, Efficient strategy for enhancement of visible light photocatalytic activityof NaTaO3 by a significant extent. J. Phys Chem. C 121, 1280–1290 (2017)

    Article  Google Scholar 

  19. C. Pan, T. Takata, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, K. Domen, A complex perovskite oxynitrite: the first catalysts for water splitting operable at up to 600 nm. Angew. Chem. Int. Ed. 127 2998–3002 (2015)

  20. N. Nuraje, R. Asmatulu, S. Kudaibergenov, Metal oxide based functional materials for solar energy conversion: a review. Curr. Inorg. Chem. 2, 124–146 (2012)

    Article  CAS  Google Scholar 

  21. H. Yu, S. Ouyang, S. Yan, Z. Li, T. Yu, Z. Zou, Sol-gel hydrothermal synthesis of visible light driven Cr doped SrTiO3 for efficient hydrogen production. J. Mater. Chem. 21, 11347–11351 (2011)

    Article  CAS  Google Scholar 

  22. X. Yan, X. Huang, Y. Fang, Y. Min, Z. Wu, W. Li, J. Yuan, L. Tan, Synthesis of rodlike CaTiO3 with enhanced charge separation efficiency and high photocatalytic activity. Int. J. Electrochem. Sci. 9, 5155–5163 (2014)

    Google Scholar 

  23. K.E. Zitello, P.A. Salvador, G.S. Rohrer, Influence of surface orientation on the photochemical reactivity of CaTiO3. J. Am. Ceram. Soc. 103, 4498–4506 (2020). https://doi.org/10.1111/jace.17107

    Article  CAS  Google Scholar 

  24. M. Passi, B. Pal, A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications. Powder Technol. 388, 274–304 (2021). https://doi.org/10.1016/j.powtec.2021.04.056

    Article  CAS  Google Scholar 

  25. F.R. Cesconeto, M. Borlaf, M.I. Nieto, A.P.N. de Oliveira, R. Moreno, Synthesis of CaTiO3 and CaTiO3/TiO2 nanoparticulate compounds through Ca2+/TiO2 colloidal sols: Structural and photocatalytic characterization. Ceram. Int. 44, 301–309 (2018). https://doi.org/10.1016/j.ceramint.2017.09.173

    Article  CAS  Google Scholar 

  26. Y. Yan, H. Yang, X. Zhao, R. Li, X. Wang, Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater. Res. Bull. 105, 286–290 (2018). https://doi.org/10.1016/j.materresbull.2018.05.008

    Article  CAS  Google Scholar 

  27. T. Chen, L. Bao, Y. Zheng, X. Yang, L. Ruan, Y. Liu, G. Xu, G. Han, Hydrothermal synthesis of perovskite CaTiO3 tetragonal microrods with vertical V-type holes along the [010] direction. CrystEngComm. 21, 4763–4770 (2019). https://doi.org/10.1039/c9ce00726a

    Article  CAS  Google Scholar 

  28. W. Dong, B. Song, W. Meng, G. Zhao, G. Han, A simple solvothermal process to synthesize CaTiO 3 microspheres and its photocatalytic properties. Appl. Surf. Sci. 349, 272–278 (2015). https://doi.org/10.1016/j.apsusc.2015.05.006

    Article  CAS  Google Scholar 

  29. S. Anjelin Ursula Portia, S. Rajkumar, E. Elanthamilan, J. Princy Merlin, K. Ramamoorthy, Effect of annealing temperature on structural, optical and visible light photocatalytic performance of CaTiO3 catalysts synthesized by simple sol-gel technique. Inorg. Chem. Commun. 119, 108051 (2020). https://doi.org/10.1016/j.inoche.2020.108051

  30. L.J. Bercmans, T. Sornakumar, A.H. Kumar, G. Siva, G. Venkatesh, Synthesis and characterization of calcium titanate and calcium zirconate compound powders by molten salt method. Nano. Hybrids Compos. 17, 88–95 (2017). https://doi.org/10.4028/www.scientific.net/nhc.17.88

    Article  Google Scholar 

  31. J.G. Miranda-Hernández, J. Vargas-Hernández, H. Casarrubias-Vargas, C.O. González-Morán, E. Refugio-García, J. de J.A. Flores Cuautle, Synthesis and effect of CaTiO3 formation in CaO·Al2O3 by solid-state reaction from CaCO3·Al2O3 and Ti. Mater. Chem. Phys. 232, 57–64 (2019). https://doi.org/10.1016/j.matchemphys.2019.04.050

  32. T. Kimijima, K. Kanie, M. Nakaya, A. Muramatsu, Hydrothermal synthesis of size- and shape-controlled CaTiO3 fine particles and their photocatalytic activity. CrystEngComm. 16, 5591–5597 (2014). https://doi.org/10.1039/c4ce00376d

    Article  CAS  Google Scholar 

  33. W. Dong, G. Zhao, Q. Bao, X. Gu, Effects of morphologies on the photocatalytic properties of CaTiO3 nano/microstructures. J. Ceram. Soc. Japan 124, 475–479 (2016). https://doi.org/10.2109/jcersj2.15272

    Article  CAS  Google Scholar 

  34. T. Soltani, X. Zhu, A. Yamamoto, S.P. Singh, E. Fudo, A. Tanaka, H. Kominami, H. Yoshida, Effect of transition metal oxide cocatalyst on the photocatalytic activity of Ag loaded CaTiO3 for CO2 reduction with water and water splitting. Appl. Catal. B Environ. 286, 119899 (2021). https://doi.org/10.1016/j.apcatb.2021.119899

    Article  CAS  Google Scholar 

  35. J. Lin, J. Hu, C. Qiu, H. Huang, L. Chen, Y. **e, Z. Zhang, H. Lin, X. Wang, In situ hydrothermal etching fabrication of CaTiO3 on TiO2 nanosheets with heterojunction effects to enhance CO2 adsorption and photocatalytic reduction, Catal. Sci. Technol. 9, 336–346 (2019). https://doi.org/10.1039/c8cy02142b

    Article  CAS  Google Scholar 

  36. T.W. Tseng, U. Rajaji, T.W. Chen, S.M. Chen, Y.C. Huang, V. Mani, A. Irudaya Jothi, Sonochemical synthesis and fabrication of perovskite type calcium titanate interfacial nanostructure supported on graphene oxide sheets as a highly efficient electrocatalyst for electrochemical detection of chemotherapeutic drug. Ultrason. Sonochem. 69, 105242 (2020). https://doi.org/10.1016/j.ultsonch.2020.105242

  37. M. Klusáčková, R. Nebel, K.M. Macounová, M. Klementová, P. Krtil, Size control of the photo-electrochemical water splitting activity of SrTiO3 nano-cubes. Electrochim. Acta. 297, 215–222 (2019). https://doi.org/10.1016/j.electacta.2018.11.185

    Article  CAS  Google Scholar 

  38. K.M. Macounová, R. Nebel, M. Klusáčková, M. Klementová, P. Krtil, Selectivity control of the photo-catalytic water oxidation on SrTiO3 nanocubes via surface dimensionality. ACS Appl. Mater. Interfaces 11, 16506–16516 (2019). https://doi.org/10.1021/acsami.9b00342

    Article  CAS  PubMed  Google Scholar 

  39. M. Klusáčková, R. Nebel, P. Krtil, H. Krýsová, R.K. Pittkowski, K.M. Macounová, Photo-electrochemical activity and selectivity of nanocrystalline BaTiO3 electrodes in water oxidation. Electrochem. Sci. Adv. 1–12 (2020). https://doi.org/10.1002/elsa.202000005

  40. R. Pittkowski, S. Divanis, M. Klementová, R. Nebel, S. Nikman, H. Hoster, S. Mukerjee, J. Rossmeisl, P. Krtil, Engendering unprecedented activation of oxygen evolution via rational pinning of Ni oxidation state in prototypical perovskite: close juxtaposition of synthetic approach and theoretical conception. ACS Catal. 11, 985–997 (2021). https://doi.org/10.1021/acscatal.0c04733

    Article  CAS  Google Scholar 

  41. M. Graetzel, In Heterogeneous photochemical electron transfer, CRC press. Bocca Raton 87 (1989)

  42. X. Shi, H. Yang, Z. Liang, A. Tian, X. Xue, Synthesis of vertically aligned CaTiO3 nanotubes with simple hydrothermal method and its photoelectrochemical property. Nanotechnology 29(11pp), 385605  (2018)

  43. L.M. Peter, Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J. Solid State Electrochem. 17, 315–326 (2013). https://doi.org/10.1007/s10008-012-1957-3

    Article  CAS  Google Scholar 

  44. L.M. Peter, A.B. Walker, T. Bein, A.G. Hufnagel, I. Kondofersky, Interpretation of photocurrent transients at semiconductor electrodes: effects of band-edge unpinning. J. Electroanal. Chem. 872, 114234 (2020). https://doi.org/10.1016/j.jelechem.2020.114234

    Article  CAS  Google Scholar 

  45. K. Minhova Macounova, M. Klusackova, R. Nebel, M. Zukalova, M. Klementova, I.E. Castelli, M.D. Spo, J. Rossmeisl, L. Kavan, P. Krtil, Synergetic surface sensitivity of photoelectrochemical water oxidation on TiO2 (anatase) electrodes. J. Phys. Chem. C 121(11), 6024–6032 (2017). https://doi.org/10.1021/acs.jpcc.6b09289

Download references

Funding

The financial support of the Czech Academy of Sciences (grant number L200402001) is greatly appreciated. The authors acknowledge the services provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2018124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Krtil.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 569 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klusáčková, M., Nebel, R., Macounová, K.M. et al. Crystal Size Dependence of the Photo-Electrochemical Water Oxidation on Nanoparticulate CaTiO3. Electrocatalysis 14, 353–364 (2023). https://doi.org/10.1007/s12678-022-00801-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00801-y

Keywords

Navigation