Log in

Mathematical Modeling and Theoretical Analysis of Bioconvective Magnetized Sutterby Nanofluid Flow Over Rotating Disk with Activation Energy

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In this article, flow behavior of magnetized Sutterby nanoliquid due to rotating permeable disk is investigated. Suspended solid nanoparticles are stabilized with the help of bioconvection and buoyancy forces. Energy and concentration relations are respectively modeled taking thermal radiation and Arrhenius energy. Additionally, binary chemical reaction in nanomaterial flow is accounted. Flow governing radiated Sutterby nanomaterial is expressed by dimensional equations using boundary layer suppositions. Using appropriate transformations, the dimensional system is altered to a nondimensional one. The nondimensional governing equations are solved via Runge–Kutta-Fehlberg method (RKF-45). The effective consequences of diverse flow regulating variables on fluid velocity, thermal field, mass concentration, and motile microorganisms density are studied via various curves. Surface drag force, heat transfer, density number, and Sherwood number are computed numerically and analyzed. It is observed that velocity components diminished versus rising Hartman number, Reynolds number, fluid material variable, and porosity parameter. Further, it is observed that chemical reaction and activation energy have opposite impacts on mass concentration. Major observations of current exploration are itemized at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

μ :

Dynamic viscosity (kgm−1s−1)

T :

Nanofluid temperature (K)

C p :

Specific heat (Jkg−1K−1)

(u, w):

Velocity components (ms−1)

σ :

Electrical conductivity (kg−1m−3s3A2)

τ :

Heat capacity ratio (−)

α :

Thermal diffusivity (Wm−1K−1)

l :

Characteristic cylinder length (m)

b :

Chemotaxis constant (m)

C :

Concentration at infinity (−)

C :

Nanofluid concentration (−)

D B :

Brownian motion coefficient (m2s−1)

C w :

Wall concentration (−)

T :

Temperature at infinity (K)

B 0 :

Magnitude of magnetic field (kg s−2A−1)

n :

Variable (−)

φ(η):

Concentration of nanoparticles (−)

θ(η):

Temperature of fluid (−)

λ :

Fluid material variable (−)

Lb :

Bioconvection Lewis number (−)

n :

Dimensionless quantity (−)

Re:

Reynolds number (−)

J w :

Local mass flux (kgm−2s−1)

Rd :

Radiation variable (−)

Sc :

Schmidt number (−)

Ec :

Eckert number (−)

q w :

Surface heat flux (Wm−2)

A :

Ratio variable (−)

Pr:

Prandtl number (−)

(τ w, r, τ w, θ):

Shear stresses (Nm−2)

(r, z):

Coordinates of cylinder (m)

ρ :

Fluid density (kgm−3)

n 1 :

Fitted rate constant (−)

k :

Mean absorption coefficient (m−1)

K p :

Surface permeability (m2)

E a :

Activation energy (kg m2s−2)

Kr 2 :

Reaction rate parameter (s−1)

N :

Microorganisms density at ambient (−)

v :

Kinematic viscosity (m2s−1)

N :

Concentration of microorganisms (−)

T w :

Wall temperature (K)

D m :

Diffusivity of microorganisms (m2s−1)

W c :

Maximum speed of swimming cells (ms−1)

N w :

Wall concentration of microorganisms (−)

D T :

Thermophoretic diffusion (m2s−1)

g :

Gravitational acceleration (ms−2)

χ(η):

Volume fraction of microorganisms (−)

f '(η):

Fluid velocity (−)

N :

Ambient concentration of microorganisms (−)

Ha :

Hartmann number (−)

Nt :

Thermophoresis variable (−)

K 1 :

Porosity parameter (−)

K :

Curvature parameter (−)

Nb :

Brownian dispersion parameter (−)

δ :

Ratio of temperature difference (−)

Ω:

Microorganisms difference ratio parameter (−)

Pe :

Bioconvection Peclet number (−)

E 1 :

Activation energy parameter (−)

γ :

Chemical reaction parameter (−)

q n :

Wall motile microorganisms flux (Wm−2K−1)

References

  1. Kármán, T. V. (1921). Über laminare und turbulente Reibung. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1(4), 233–252. https://doi.org/10.1002/zamm.19210010401

    Article  MATH  Google Scholar 

  2. Hayat, T., Ahmad, S., Khan, M., & Alsaedi, A. (2018). Modeling chemically reactive flow of Sutterby nanofluid by a rotating disk in presence of heat generation/absorption. Communications in Theoretical Physics, 69, 569. https://doi.org/10.1088/0253-6102/69/5/569

    Article  MathSciNet  Google Scholar 

  3. Waqas, H., Imran, M., Muhammad, T., Sait, S. M., & Ellahi, R. (2021). Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk. Journal of Thermal Analysis and Calorimetry, 145(2), 523–539. https://doi.org/10.1007/s10973-020-09728-2

    Article  Google Scholar 

  4. Mebarek-Oudina, F. (2019). Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transfer—Asian Research, 48(1), 135–147. https://doi.org/10.1002/htj.21375

    Article  Google Scholar 

  5. Hassan, M., Mebarek-Oudina, F., Faisal, A., Ghafar, A., & Ismail, A. I. (2022). Thermal energy and mass transport of shear thinning fluid under effects of low to high shear rate viscosity. International Journal of Thermofluids, 15, 100176. https://doi.org/10.1016/j.ijft.2022.100176

    Article  Google Scholar 

  6. Reddy, Y. D., Mebarek-Oudina, F., Goud, B. S., & Ismail, A. I. (2022). Radiation, velocity and thermal slips effect toward MHD boundary layer flow through heat and mass transport of Williamson nanofluid with porous medium. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-022-06825-2

  7. Djebali, R., Mebarek-Oudina, F., & Rajashekhar, C. (2021). Similarity solution analysis of dynamic and thermal boundary layers: Further formulation along a vertical flat plate. Physica Scripta, 96(8), 085206. https://doi.org/10.1088/1402-4896/abfe31

    Article  Google Scholar 

  8. Archana, M., Gireesha, B. J., Prasannakumara, B. C., & Gorla, R. S. R. (2017). Influence of nonlinear thermal radiation on rotating flow of Casson nanofluid. Nonlinear Engineering, 7. https://doi.org/10.1515/nleng-2017-0041

  9. Mustafa, M. (2017). MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. International Journal of Heat and Mass Transfer, 108, 1910–1916. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.064

    Article  Google Scholar 

  10. Irfan, M., Rafiq, K., Anwar, M. S., Khan, M., Khan, W. A., & Iqbal, K. (2021). Evaluating the performance of new mass flux theory on Carreau nanofluid using the thermal aspects of convective heat transport. Pramana, 95(4), 203. https://doi.org/10.1007/s12043-021-02217-7

    Article  Google Scholar 

  11. Asifa, Anwar, T., Kumam, P., & Shah, Z. (2021). Sitthithakerngkiet, K. Significance of shape factor in heat transfer performance of molybdenum-disulfide nanofluid in multiple flow situations; A comparative fractional study. Molecules, 26, 3711. https://doi.org/10.3390/molecules26123711

    Article  Google Scholar 

  12. Hayat, T., Anwar, M. S., Farooq, M., & Alsaedi, A. (2014). MHD stagnation point flow of second grade fluid over a stretching cylinder with heat and mass transfer. International Journal of Nonlinear Sciences and Numerical Simulation, 15(6), 365–376. https://doi.org/10.1515/ijnsns-2013-0104

    Article  MathSciNet  MATH  Google Scholar 

  13. Anwar, T., Kumam, P., & Watthayu, W. (2020). An exact analysis of unsteady MHD free convection flow of some nanofluids with ramped wall velocity and ramped wall temperature accounting heat radiation and injection/consumption. Scientific Reports, 10(1), 17830. https://doi.org/10.1038/s41598-020-74739-w

    Article  Google Scholar 

  14. Kumam, P., Anwar, T., Watthayu, W., & Shah, Z. (2021). Double slip effects and heat transfer characteristics for channel transport of engine oil with titanium and aluminum alloy nanoparticles: A fractional study. IEEE Access, 9, 52036–52052. https://doi.org/10.1109/ACCESS.2021.3067937

    Article  Google Scholar 

  15. Anwar, T., Kumam, P., & Muhammad, S. (2022). Comparative study on heat transfer performance of γAl2O3 − C2H6O2 and γAl2O3 − H2O nanofluids via Prabhakar fractional derivative model for MHD channel flows. Case Studies in Thermal Engineering, 38, 102319. https://doi.org/10.1016/j.csite.2022.102319

    Article  Google Scholar 

  16. Anwar, T., Kumam, P., Thounthong, P., & Sitthithakerngkiet, K. (2021). Nanoparticles shape effects on thermal performance of Brinkman-type ferrofluid under heat injection/consumption and thermal radiation: A fractional model with non-singular kernel and non-uniform temperature and velocity conditions. Journal of Molecular Liquids, 335, 116107. https://doi.org/10.1016/j.molliq.2021.116107

    Article  Google Scholar 

  17. Khan, J. A., Mustafa, M., Hayat, T., Turkyilmazoglu, M., & Alsaedi, A. (2017). Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno’s model. International Journal of Numerical Methods for Heat & Fluid Flow, 27(1), 221–234. https://doi.org/10.1108/HFF-08-2015-0328

    Article  Google Scholar 

  18. Hafeez, A., Khan, M., & Ahmed, J. (2020). Flow of magnetized Oldroyd-B nanofluid over a rotating disk. Applied Nanoscience, 10(12), 5135–5147. https://doi.org/10.1007/s13204-020-01401-2

    Article  Google Scholar 

  19. Bég, O. A., Kabir, M. N., Uddin, M. J., Izani Md Ismail, A., & Alginahi, Y. M. (2020). Numerical investigation of Von Karman swirling bioconvective nanofluid transport from a rotating disk in a porous medium with Stefan blowing and anisotropic slip effects. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406220973061. https://doi.org/10.1177/0954406220973061

  20. Asogwa, K. K., Mebarek-Oudina, F., & Animasaun, I. L. (2022). Comparative investigation of water-based Al2O3 nanoparticles through water-based CuO nanoparticles over an exponentially accelerated radiative Riga plate surface via heat transport. Arabian Journal for Science and Engineering, 47(7), 8721–8738. https://doi.org/10.1007/s13369-021-06355-3

    Article  Google Scholar 

  21. Khan, U., Mebarek-Oudina, F., Zaib, A., Ishak, A., Abu Bakar, S., Sherif, E.-S. M., & Baleanu, D. (2022). An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces. Waves in Random and Complex Media, 1–14. https://doi.org/10.1080/17455030.2022.2102689

  22. Chabani, I., Mebarek-Oudina, F., & Ismail, A. A. I. (2022). MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle. Micromachines, 13(2), 224. https://doi.org/10.3390/mi13020224

    Article  Google Scholar 

  23. Bestman, A. R. (1990). Natural convection boundary layer with suction and mass transfer in a porous medium. International Journal of Energy Research, 14(4), 389–396. https://doi.org/10.1002/er.4440140403

    Article  Google Scholar 

  24. Ahmad, S., Ijaz Khan, M., Hayat, T., & Alsaedi, A. (2020). Inspection of Coriolis and Lorentz forces in nanomaterial flow of non-Newtonian fluid with activation energy. Physica A: Statistical Mechanics and its Applications, 540, 123057. https://doi.org/10.1016/j.physa.2019.123057

    Article  MathSciNet  MATH  Google Scholar 

  25. Kumar, R., Bhattacharyya, A., Seth, G. S., & Chamkha, A. J. (2021). Transportation of magnetite nanofluid flow and heat transfer over a rotating porous disk with Arrhenius activation energy: Fourth order Noumerov’s method. Chinese Journal of Physics, 69, 172–185. https://doi.org/10.1016/j.cjph.2020.11.018

    Article  MathSciNet  Google Scholar 

  26. Khan, S. U., Waqas, H., Muhammad, T., Imran, M., & Aly, S. (2020). Simultaneous effects of bioconvection and velocity slip in three-dimensional flow of Eyring-Powell nanofluid with Arrhenius activation energy and binary chemical reaction. International Communications in Heat and Mass Transfer, 117, 104738. https://doi.org/10.1016/j.icheatmasstransfer.2020.104738

    Article  Google Scholar 

  27. Alsaadi, F. E., Hayat, T., Khan, M. I., & Alsaadi, F. E. (2020). Heat transport and entropy optimization in flow of magneto-Williamson nanomaterial with Arrhenius activation energy. Computer Methods and Programs in Biomedicine, 183, 105051. https://doi.org/10.1016/j.cmpb.2019.105051

    Article  Google Scholar 

  28. Hsiao, K.-L. (2016). Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Applied Thermal Engineering, 98, 850–861. https://doi.org/10.1016/j.applthermaleng.2015.12.138

    Article  Google Scholar 

  29. Jamil, B., Anwar, M. S., Rasheed, A., & Irfan, M. (2020). MHD Maxwell flow modeled by fractional derivatives with chemical reaction and thermal radiation. Chinese Journal of Physics, 67, 512–533. https://doi.org/10.1016/j.cjph.2020.08.012

    Article  MathSciNet  Google Scholar 

  30. Mutuku, W. N., & Makinde, O. D. (2014). Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Computers & Fluids, 95, 88–97. https://doi.org/10.1016/j.compfluid.2014.02.026

    Article  MathSciNet  MATH  Google Scholar 

  31. Balla, C. S., Haritha, C., Naikoti, K., & Rashad, A. M. (2019). Bioconvection in nanofluid-saturated porous square cavity containing oxytactic microorganisms. International Journal of Numerical Methods for Heat & Fluid Flow, 29(4), 1448–1465. https://doi.org/10.1108/HFF-05-2018-0238

    Article  Google Scholar 

  32. Sk, M. T., Das, K., & Kundu, P. K. (2016). Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles. Journal of Molecular Liquids, 220, 518–526. https://doi.org/10.1016/j.molliq.2016.04.097

    Article  Google Scholar 

  33. Azam, M. (2022). Bioconvection and nonlinear thermal extrusion in development ofchemically reactive Sutterby nano-material due to gyrotactic microorganisms. International Communications in Heat and Mass Transfer, 130, 105820. https://doi.org/10.1016/j.icheatmasstransfer.2021.105820

    Article  Google Scholar 

  34. Belabid, J., & Allali, K. (2021). Thermo-bioconvection in horizontal wavy-walled porous annulus. European Journal of Mechanics - B/Fluids, 89, 421–429. https://doi.org/10.1016/j.euromechflu.2021.07.006

    Article  MathSciNet  MATH  Google Scholar 

  35. Hayat, T., Nisar, Z., & Alsaedi, A. (2021). Bioconvection and Hall current analysis for peristalsis of nanofluid. International Communications in Heat and Mass Transfer, 129, 105693. https://doi.org/10.1016/j.icheatmasstransfer.2021.105693

    Article  Google Scholar 

  36. Khan, M. I., & Alzahrani, F. (2021). Dynamics of viscoelastic fluid conveying nanoparticles over a wedge when bioconvection and melting process are significant. International Communications in Heat and Mass Transfer, 128, 105604. https://doi.org/10.1016/j.icheatmasstransfer.2021.105604

    Article  Google Scholar 

  37. Ali, B., Shafiq, A., Manan, A., Wakif, A., & Hussain, S. (2021). Bioconvection: Significance of mixed convection and mhd on dynamics of Casson nanofluid in the stagnation point of rotating sphere via finite element simulation. Mathematics and Computers in Simulation. https://doi.org/10.1016/j.matcom.2021.11.019

  38. Rana, S., Mehmood, R., & Bhatti, M. M. (2021). Bioconvection oblique motion of magnetized Oldroyd-B fluid through an elastic surface with suction/injection. Chinese Journal of Physics, 73, 314–330. https://doi.org/10.1016/j.cjph.2021.07.013

    Article  MathSciNet  Google Scholar 

  39. Waqas, H., Imran, M., & Bhatti, M. M. (2020). Influence of bioconvection on Maxwell nanofluid flow with the swimming of motile microorganisms over a vertical rotating cylinder. Chinese Journal of Physics, 68, 558–577. https://doi.org/10.1016/j.cjph.2020.10.014

    Article  MathSciNet  Google Scholar 

  40. Khan, W. A., & Pop, I. (2010). Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53(11), 2477–2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032

    Article  MATH  Google Scholar 

  41. Wang, C. Y. (1989). Free convection on a vertical stretching surface, (11), 69, 418–420. https://doi.org/10.1002/zamm.19890691115

Download references

Funding

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R399), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Fazal Haq and Barno Sayfutdinovna Abdullaeva conceived and designed the analysis and wrote the paper text. Mujeeb ur Rahman and Reem Altuijri contributed the analysis tools. M. Ijaz Khan supervised overall activities.

Corresponding author

Correspondence to Fazal Haq.

Ethics declarations

Ethics Approval

The research does not involve any animal trial or case studies; therefore, ethical is not applicable.

Consent to Participate

The research does not involve any human subjects; therefore, consent to participate is not applicable.

Consent for Publication

All the authors provide consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, F., Rahman, M.U., Khan, M.I. et al. Mathematical Modeling and Theoretical Analysis of Bioconvective Magnetized Sutterby Nanofluid Flow Over Rotating Disk with Activation Energy. BioNanoSci. 13, 1849–1862 (2023). https://doi.org/10.1007/s12668-023-01166-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01166-2

Keywords

Navigation