Log in

Investigation of Nonlinear Optical Properties of AgNPs Synthesized Using Cyclea peltata Leaf Extract Post OVAT Optimization

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This paper focuses on the use of Cyclea peltata leaf extract for green synthesis of silver nanoparticles (CPL-AgNPs) post-optimization by one variable at a time (OVAT) approach for nonlinear optics application. The leaf extract of Cyclea peltata (10% w/v) and AgNO3 (1 mM) was used for the synthesis of silver nanoparticles (CPL-AgNPs). Reactions conditions like CPL extract concentration, salt concentration, temperature, pH, RPM, and time for synthesis were optimized by using OVAT approach. A UV-visible spectroscopic investigation confirmed the biosynthesis of CPL-AgNPs at 420 nm. Field emission scanning electron microscope (FESEM) confirmed the spherical monodispersed nanoparticles in the range of 30–50 nm and EDAX confirmed the purity of the sample. FTIR confirmed the cap** of nanoparticles by plant phytochemicals. The synthesized CPL-AgNPs were evaluated for nonlinear optical properties using the Z-scan technique at 532 nm with a CW laser. Strong nonlinear absorption by the nanoparticles in the range of 2.85 × 10−2 cm/W was observed. Moreover, CPL-AgNPs display superior optical limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gomaa, E. Z. (2017). Antimicrobial, antioxidant and antitumor activities of silver nanoparticles synthesized by Allium cepa extract: A green approach. Journal, Genetic Engineering & Biotechnology, 15(1), 49–57.

    Article  Google Scholar 

  2. Sathishkumar, P., Preethi, J., Vijayan, R., Yusoff, A. R. M., Ameen, F., Suresh, S., et al. (2016). Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesized silver nanoparticles using Coriandrum sativum leaf extract. Journal of Photochemistry and Photobiology B: Biology, 163, 69–76.

    Article  Google Scholar 

  3. Ren, Y. Y., Yang, H., Wang, T., & Wang, C. (2019). Bio-synthesis of silver nanoparticles with antibacterial activity. Materials Chemistry and Physics, 235, 121746.

    Article  Google Scholar 

  4. Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174.

    Article  Google Scholar 

  5. Akintelu, S. A., Folorunso, A. S., & Ademosun, O. T. (2019). Instrumental characterization and antibacterial investigation of silver nanoparticles synthesized from Garcinia kola leaf. Journal of Drug Delivery and Therapeutics, 9(6-s), 58–64.

    Article  Google Scholar 

  6. Akintelu, S. A., Folorunso, A. S., Adewale, A. S., & Similoluwa, F. A. Biosynthesis, characterization and antifungal investigation of Ag-Cu nanoparticles from bark extracts of Garcina kola. Stem Cells, 10(4), 30–37.

  7. Akintelu, S. A., & Folorunso, A. S. (2019). Characterization and antimicrobial investigation of synthesized silver nanoparticles from Annona muricata leaf extracts. J Nanotechnol Nanomed Nanobiotechnol, 6, 1–5.

    Google Scholar 

  8. Akintelu, S. A., Folorunso, A. S., Oyebamiji, A. K., & Erazua, E. A. (2019). Antibacterial potency of silver nanoparticles synthesized using Boerhaavia diffusa leaf extract as reductive and stabilizing agent. International Journal of Pharmaceutical Sciences and Research, 10(12), 374–380.

    Google Scholar 

  9. Zhang, Y. X., & Wang, Y. H. (2017). Nonlinear optical properties of metal nanoparticles: a review. RSC Advances, 7(71), 45129–45144.

    Article  Google Scholar 

  10. Yadav, R. K., Aneesh, J., Sharma, R., Abhiramnath, P., Maji, T. K., Omar, G. J., et al. (2018). Designing hybrids of graphene oxide and gold nanoparticles for nonlinear optical response. Physical Review Applied, 9(4), 044043.

    Article  Google Scholar 

  11. Yu, D., Sun, X., Chen, X., Ma, W., Sun, J., Zhou, C., et al. (2018). In situ hydrosilane reduction and preparation of gold nanoparticle–gel glass composites with nonlinear optical properties. Journal of Materials Chemistry C, 6(21), 5624–5629.

    Article  Google Scholar 

  12. Mai, H. H., Kaydashev, V. E., Tikhomirov, V. K., Janssens, E., Shestakov, M. V., Meledina, M., et al. (2014). Nonlinear optical properties of Ag nanoclusters and nanoparticles dispersed in a glass host. The Journal of Physical Chemistry C, 118(29), 15995–16002.

    Article  Google Scholar 

  13. Awad, M. A., Hendi, A. A., Ortashi, K. M., Alanazi, A. B., ALZahrani, B. A., & Soliman, D. A. (2019). Greener synthesis, characterization, and antimicrobiological effects of helba silver nanoparticle-PMMA nanocomposite. International Journal of Polymer Science, 2019.

  14. Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules, 124, 148–154.

    Article  Google Scholar 

  15. Qasim Nasar, M., Zohra, T., Khalil, A. T., Saqib, S., Ayaz, M., Ahmad, A., & Shinwari, Z. K. (2019). Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chemistry Letters and Reviews, 12(3), 310–322.

    Article  Google Scholar 

  16. Selvaraj, V., Sagadevan, S., Muthukrishnan, L., Johan, M. R., & Podder, J. (2019). Eco-friendly approach in synthesis of silver nanoparticles and evaluation of optical, surface morphological and antimicrobial properties. Journal of Nanostructure in Chemistry, 9(2), 153–162.

    Article  Google Scholar 

  17. Nithyaprakash, D., & Chandrasekaran, J. (2010). NLO properties of tin sulfide nanoparticle by precipitation method. Optoelectronics and Advanced Materials, 4, 1445–1447.

    Google Scholar 

  18. Rout, A., Boltaev, G. S., Ganeev, R. A., Fu, Y., Maurya, S. K., Kim, V. V., et al. (2019). Nonlinear optical studies of gold nanoparticle films. Nanomaterials, 9(2), 291.

    Article  Google Scholar 

  19. Sreelatha, S., Jeyachitra, A., & Padma, P. R. (2011). Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food and Chemical Toxicology, 49(6), 1270–1275.

    Article  Google Scholar 

  20. Bhau, B. S., Ghosh, S., Puri, S., Borah, B., Sarmah, D. K., & Khan, R. (2015). Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Advanced Materials Letters, 6(1), 55–58.

    Article  Google Scholar 

  21. Irfan, M., Nadeem, M., & Syed, Q. (2014). One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. Journal of Radiation Research and Applied Science, 7(3), 317–326.

    Article  Google Scholar 

  22. Sheik-Bahae, M., Said, A. A., Wei, T. H., Hagan, D. J., & Van Stryland, E. W. (1990). Sensitive measurement of optical nonlinearities using a single beam. IEEE Journal of Quantum Electronics, 26(4), 760–769.

    Article  Google Scholar 

  23. Shinde, V. V., Jadhav, P. R., Kim, J. H., & Patil, P. S. (2013). One-step synthesis and characterization of anisotropic silver nanoparticles: Application for enhanced antibacterial activity of natural fabric. Journal of Materials Science, 48(24), 8393–8401.

    Article  Google Scholar 

  24. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., et al. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 57.

    Article  Google Scholar 

  25. Boukir, A., Fellak, S., & Doumenq, P. (2019). Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Heliyon, 5(9), e02477.

    Article  Google Scholar 

  26. Suvarna, A. R., Shetty, A., Anchan, S., Kabeer, N., & Nayak, S. (2020). Cyclea peltata leaf mediated green synthesized bimetallic nanoparticles exhibits methyl green dye degradation capability. BioNanoScience, 1–12.

  27. Suh, I. K., Ohta, H., & Waseda, Y. (1988). High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. Journal of Materials Science, 23(2), 757–760.

    Article  Google Scholar 

  28. Vo, T. T., Nguyen, T. T. N., Huynh, T. T. T., Vo, T. T. T., Nguyen, T. T. N., Nguyen, D. T., et al. (2019). Biosynthesis of silver and gold nanoparticles using aqueous extract from Crinum latifolium leaf and their applications forward antibacterial effect and wastewater treatment. Journal of Nanomaterials, 2019.

  29. Traiwatcharanon, P., Timsorn, K., & Wongchoosuk, C. (2016). Effect of pH on the green synthesis of silver nanoparticles through reduction with Pistia stratiotes L. extract. In Advanced materials research (Vol. 1131, pp. 223–226). Trans Tech Publications Ltd.

  30. Jenitta, E. P., & Gowda, P. V. (2019). Green synthesis of silver nanoparticles using leaf extract of Cyclea peltata and its antimicrobial activity. Research & Reviews: Journal of Botany, 8(2), 1–6.

    Google Scholar 

  31. Luu, T., Cao, X. T., Nguyen, V., Pham, N. L., Nguyen, H. L., & Nguyen, C. T. (2020). Simple controlling ecofriendly synthesis of silver nanoparticles at room temperature using lemon juice extract and commercial rice vinegar. Journal of Nanotechnology, 2020.

  32. Poornesh, P., Hegde, P. K., Umesh, G., Manjunatha, M. G., Manjunatha, K. B., & Adhikari, A. V. (2010). Nonlinear optical and optical power limiting studies on a new thiophene-based conjugated polymer in solution and solid PMMA matrix. Optics & Laser Technology, 42(1), 230–236.

    Article  Google Scholar 

  33. Gurudas, U., Brooks, E., Bubb, D. M., Heiroth, S., Lippert, T., & Wokaun, A. (2008). Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses. Journal of Applied Physics, 104(7), 073107.

    Article  Google Scholar 

  34. Henari, F. Z., & Dakhel, A. A. (2011). Observation of simultaneous reverse saturation absorption and saturation absorption in silver nanoparticles incorporated into europium oxide thin film. Optics Communications, 284(2), 651–655.

    Article  Google Scholar 

  35. Qian, W., Yan, H., Wang, J. J., Zou, Y. H., Lin, L., & Wu, J. L. (1999). Observation of coherent phonons in silver nanoparticles embedded in BaO thin films. Applied Physics Letters, 74(13), 1806–1808.

    Article  Google Scholar 

  36. Choi, Y., & Park, J. H. (2001). MR Kim, W. Jhe, and BK Rhee. Appl. Phys. Lett, 78, 856

  37. Kumara, K., Shetty, T. C. S., Maidur, S. R., Patil, P. S., & Dharmaprakash, S. M. (2019). Continuous wave laser induced nonlinear optical response of nitrogen doped graphene oxide. Optik, 178, 384–393.

    Article  Google Scholar 

  38. Muruganandi, G., Saravanan, M., Vinitha, G., Raj, M. J., & Girisun, T. S. (2018). Barium borate nanorod decorated reduced graphene oxide for optical power limiting applications. Optical Materials, 75, 612–618.

    Article  Google Scholar 

  39. Ferreira, E., Kharisov, B., Vázquez, A., Méndez, E. A., Severiano-Carrillo, I., & Trejo-Durán, M. (2020). Tuning the nonlinear optical properties of Au@ Ag bimetallic nanoparticles. Journal of Molecular Liquids, 298, 112057.

    Article  Google Scholar 

  40. Kirubha, E., & Palanisamy, P. K. (2014). Green synthesis, characterization of Au–Ag core–shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(4), 045006.

    Google Scholar 

  41. Chen, Y., Hanack, M., Araki, Y., & Ito, O. (2005). Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting. Chemical Society Reviews, 34(6), 517–529.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Manipal College of Pharmaceutical Sciences, Manipal and DST-PURSE laboratory, Mangalore University for technical support in characterizing the nanoparticles.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Nayak.

Ethics declarations

Ethics Approval

The study does not involve the use of humans or animals, hence does not require ethical approval.

Consent to Participate

All authors agree to participate in this investigation.

Consent for Publication

All authors agree to participate in this article.

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding Statement

The study did not receive any funding.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, S., Manjunatha, K.B., Goveas, L.C. et al. Investigation of Nonlinear Optical Properties of AgNPs Synthesized Using Cyclea peltata Leaf Extract Post OVAT Optimization. BioNanoSci. 11, 884–892 (2021). https://doi.org/10.1007/s12668-021-00875-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00875-w

Keywords

Navigation