Log in

Recombinant histone H1.3 inhibits orthohantavirus infection in vitro

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Histones are proteins participating in DNA packaging. Despite this limited function, histones were shown to have antiviral activity. Histone H1.3 has been shown to inhibit adenovirus infection. Orthohantaviruses are viruses which can cause two diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). There are no current FDA-approved vaccines or antivirals for hantavirus infection. In this study, we analyzed the effect of recombinant histone H1.3 on Prospect Hill virus (PHV) replication in A549 cells. PHV virus S segment gene and myxovirus resistance protein 1 (MxA), chemokine (C-C motif) ligand 5 (CCL5), and the 10-kDa interferon-inducible protein (IP10) cellular gene expression were evaluated in A549 cells treated with histone H1.3 using qPCR. The expression of PHV virus S segment gene mRNA was significantly decreased in A549 cells when incubated with histone H1.3 compared with PHV controls. CCL5, MxA, and IP10 gene mRNA expression in A549 cells incubated with histone H1.3 before PHV infection was also significantly reduced compared with control PHV only–infected cells. These results suggest that histone H1.3 reduces PHV transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hergeth, S. P., & Schneider, R. (2015). The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep, 16(11), 1439–1453. https://doi.org/10.15252/embr.201540749.

    Article  Google Scholar 

  2. Terme, J. M., Sese, B., Millan-Arino, L., Mayor, R., Izpisua Belmonte, J. C., Barrero, M. J., & Jordan, A. (2011). Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J Biol Chem, 286(41), 35347–35357. https://doi.org/10.1074/jbc.M111.281923.

    Article  Google Scholar 

  3. Fyodorov, D. V., Zhou, B. R., Skoultchi, A. I., & Bai, Y. (2018). Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol, 19(3), 192–206. https://doi.org/10.1038/nrm.2017.94.

    Article  Google Scholar 

  4. Izzo, A., Kamieniarz, K., & Schneider, R. (2008). The histone H1 family: specific members, specific functions? Biol Chem, 389(4), 333–343. https://doi.org/10.1515/BC.2008.037.

    Article  Google Scholar 

  5. Vani, G., Devipriya, S., & Shyamaladevi, C. S. (2003). Histone H1 modulates immune status in experimental breast cancer. Chemotherapy, 49(5), 252–256. https://doi.org/10.1159/000072450.

    Article  Google Scholar 

  6. Vani, G., Vanisree, A. J., & Shyamaladevi, C. S. (2006). Histone H1 inhibits the proliferation of MCF 7 and MDA MB 231 human breast cancer cells. Cell Biol Int, 30(4), 326–331. https://doi.org/10.1016/j.cellbi.2005.12.004.

    Article  Google Scholar 

  7. Hoeksema, M., van Eijk, M., Haagsman, H. P., & Hartshorn, K. L. (2016). Histones as mediators of host defense, inflammation and thrombosis. Future Microbiol, 11(3), 441–453. https://doi.org/10.2217/fmb.15.151.

    Article  Google Scholar 

  8. Jodoin, J., & Hincke, M. T. (2018). Histone H5 is a potent antimicrobial agent and a template for novel antimicrobial peptides. Sci Rep, 8(1), 2411. https://doi.org/10.1038/s41598-018-20912-1.

    Article  Google Scholar 

  9. Hoeksema, M., Tripathi, S., White, M., Qi, L., Taubenberger, J., van Eijk, M., Haagsman, H., & Hartshorn, K. L. (2015). Arginine-rich histones have strong antiviral activity for influenza A viruses. Innate Immun, 21(7), 736–745. https://doi.org/10.1177/1753425915593794.

    Article  Google Scholar 

  10. Abudurexiti, A., Adkins, S., Alioto, D., Alkhovsky, S. V., Avsic-Zupanc, T., Ballinger, M. J., Bente, D. A., Beer, M., Bergeron, E., Blair, C. D., Briese, T., Buchmeier, M. J., Burt, F. J., Calisher, C. H., Chang, C., Charrel, R. N., Choi, I. R., Clegg, J. C. S., de la Torre, J. C., de Lamballerie, X., Deng, F., Di Serio, F., Digiaro, M., Drebot, M. A., Duan, X., Ebihara, H., Elbeaino, T., Ergunay, K., Fulhorst, C. F., Garrison, A. R., Gao, G. F., Gonzalez, J. J., Groschup, M. H., Gunther, S., Haenni, A. L., Hall, R. A., Hepojoki, J., Hewson, R., Hu, Z., Hughes, H. R., Jonson, M. G., Junglen, S., Klempa, B., Klingstrom, J., Kou, C., Laenen, L., Lambert, A. J., Langevin, S. A., Liu, D., Lukashevich, I. S., Luo, T., Lu, C., Maes, P., de Souza, W. M., Marklewitz, M., Martelli, G. P., Matsuno, K., Mielke-Ehret, N., Minutolo, M., Mirazimi, A., Moming, A., Muhlbach, H. P., Naidu, R., Navarro, B., Nunes, M. R. T., Palacios, G., Papa, A., Pauvolid-Correa, A., Paweska, J. T., Qiao, J., Radoshitzky, S. R., Resende, R. O., Romanowski, V., Sall, A. A., Salvato, M. S., Sasaya, T., Shen, S., Shi, X., Shirako, Y., Simmonds, P., Sironi, M., Song, J. W., Spengler, J. R., Stenglein, M. D., Su, Z., Sun, S., Tang, S., Turina, M., Wang, B., Wang, C., Wang, H., Wang, J., Wei, T., Whitfield, A. E., Zerbini, F. M., Zhang, J., Zhang, L., Zhang, Y., Zhang, Y. Z., Zhang, Y., Zhou, X., Zhu, L., & Kuhn, J. H. (2019). Taxonomy of the order Bunyavirales: update 2019. Arch Virol, 164(7), 1949–1965. https://doi.org/10.1007/s00705-019-04253-6.

    Article  Google Scholar 

  11. Avsic-Zupanc, T., Saksida, A., & Korva, M. (2019). Hantavirus infections. Clin Microbiol Infect, 21S, e6–e16. https://doi.org/10.1111/1469-0691.12291.

    Article  Google Scholar 

  12. Krautkramer, E., & Zeier, M. (2014). Old World hantaviruses: aspects of pathogenesis and clinical course of acute renal failure. Virus Res, 187, 59–64. https://doi.org/10.1016/j.virusres.2013.12.043.

    Article  Google Scholar 

  13. Jonsson, C. B., Figueiredo, L. T., & Vapalahti, O. (2010). A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev, 23(2), 412–441. https://doi.org/10.1128/CMR.00062-09.

    Article  Google Scholar 

  14. Garanina, S. B., Platonov, A. E., Zhuravlev, V. I., Murashkina, A. N., Yakimenko, V. V., Korneev, A. G., & Shipulin, G. A. (2009). Genetic diversity and geographic distribution of hantaviruses in Russia. Zoonoses Public Health, 56(6-7), 297–309. https://doi.org/10.1111/j.1863-2378.2008.01210.x.

    Article  Google Scholar 

  15. Olsson, G. E., Leirs, H., & Henttonen, H. (2010). Hantaviruses and their hosts in Europe: reservoirs here and there, but not everywhere? Vector Borne Zoonotic Dis, 10(6), 549–561. https://doi.org/10.1089/vbz.2009.0138.

    Article  Google Scholar 

  16. Tian, H., & Stenseth, N. C. (2019). The ecological dynamics of hantavirus diseases: from environmental variability to disease prevention largely based on data from China. PLoS Negl Trop Dis, 13(2), e0006901. https://doi.org/10.1371/journal.pntd.0006901.

    Article  Google Scholar 

  17. Song, J. W., Baek, L. J., Schmaljohn, C. S., & Yanagihara, R. (2007). Thottapalayam virus, a prototype shrewborne hantavirus. Emerg Infect Dis, 13(7), 980–985. https://doi.org/10.3201/eid1307.070031.

    Article  Google Scholar 

  18. Khaiboullina, S. F., Morzunov, S. P., & St Jeor, S. C. (2005). Hantaviruses: molecular biology, evolution and pathogenesis. Curr Mol Med, 5(8), 773–790. https://doi.org/10.2174/156652405774962317.

    Article  Google Scholar 

  19. Sinisalo, M., Vapalahti, O., Ekblom-Kullberg, S., Laine, O., Makela, S., Rintala, H., & Vaheri, A. (2010). Headache and low platelets in a patient with acute leukemia. J Clin Virol, 48(3), 159–161. https://doi.org/10.1016/j.jcv.2010.02.015.

    Article  Google Scholar 

  20. Enria, D., Padula, P., Segura, E. L., Pini, N., Edelstein, A., Posse, C. R., & Weissenbacher, M. C. (1996). Hantavirus pulmonary syndrome in Argentina. Possibility of person to person transmission. Medicina, 56(6), 709–711.

    Google Scholar 

  21. Wells, R. M., Sosa Estani, S., Yadon, Z. E., Enria, D., Padula, P., Pini, N., Mills, J. N., Peters, C. J., & Segura, E. L. (1997). An unusual hantavirus outbreak in southern Argentina: person-to-person transmission? Hantavirus pulmonary syndrome study group for Patagonia. Emerg Infect Dis, 3(2), 171–174. https://doi.org/10.3201/eid0302.970210.

    Article  Google Scholar 

  22. He, X., Wang, S., Huang, X., & Wang, X. (2013). Changes in age distribution of hemorrhagic fever with renal syndrome: an implication of China's expanded program of immunization. BMC Public Health, 13, 394. https://doi.org/10.1186/1471-2458-13-394.

    Article  Google Scholar 

  23. Rusnak, J. M., Byrne, W. R., Chung, K. N., Gibbs, P. H., Kim, T. T., Boudreau, E. F., Cosgriff, T., Pittman, P., Kim, K. Y., Erlichman, M. S., Rezvani, D. F., & Huggins, J. W. (2009). Experience with intravenous ribavirin in the treatment of hemorrhagic fever with renal syndrome in Korea. Antiviral Res, 81(1), 68–76. https://doi.org/10.1016/j.antiviral.2008.09.007.

    Article  Google Scholar 

  24. Huggins, J. W., Hsiang, C. M., Cosgriff, T. M., Guang, M. Y., Smith, J. I., Wu, Z. O., LeDuc, J. W., Zheng, Z. M., Meegan, J. M., Wang, Q. N., et al. (1991). Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J Infect Dis, 164(6), 1119–1127. https://doi.org/10.1093/infdis/164.6.1119.

    Article  Google Scholar 

  25. Mertz, G. J., Miedzinski, L., Goade, D., Pavia, A. T., Hjelle, B., Hansbarger, C. O., Levy, H., Koster, F. T., Baum, K., Lindemulder, A., Wang, W., Riser, L., Fernandez, H., Whitley, R. J., & Collaborative Antiviral Study G. (2004). Placebo-controlled, double-blind trial of intravenous ribavirin for the treatment of hantavirus cardiopulmonary syndrome in North America. Clin Infect Dis, 39(9), 1307–1313. https://doi.org/10.1086/425007.

    Article  Google Scholar 

  26. Brocato, R. L., & Hooper, J. W. (2019). Progress on the prevention and treatment of hantavirus disease. Viruses, 11(7). https://doi.org/10.3390/v11070610.

  27. Sola-Riera, C., Gupta, S., Ljunggren, H. G., & Klingstrom, J. (2019). Orthohantaviruses belonging to three phylogroups all inhibit apoptosis in infected target cells. Sci Rep, 9(1), 834. https://doi.org/10.1038/s41598-018-37446-1.

    Article  Google Scholar 

  28. Bourquain, D., Bodenstein, C., Schurer, S., & Schaade, L. (2019). Puumala and Tula virus differ in replication kinetics and innate immune stimulation in human endothelial cells and macrophages. Viruses, 11(9). https://doi.org/10.3390/v11090855.

  29. Solovieva, V. V., Kudryashova, N. V., & Rizvanov, А. А. (2011). Transfer of recombinant nucleic acids into cells (transfection) by means of histones and other nuclear proteins. Cellular Transplantology and Tissue Engineering, 6(3), 29–40.

    Google Scholar 

  30. Renner, C., Class, R., Siegmund-Schulz, H., Birke, M., Formicka-Zeppezauer, G., Jost, M., Weber, H., Zeppezauer, M., & Pfreundschuh, M. (2005). A phase I/II dose-escalation-trial of recombinant human histone H1.3 in subjects with relapsed or refractory AML. J Clin Oncol, 23(16_suppl), 6618. https://doi.org/10.1200/jco.2005.23.16_suppl.6618.

    Article  Google Scholar 

  31. Solovyeva, V. V., & Rizvanov, A. A. (2014). Application of recombinant histone protein H1.3 for inhibition of adenoviral infection. Genes and Cells, 9(3), 125–130.

    Google Scholar 

  32. Solovyeva, V. V., Isaev, A. A., Genkin, D. D., & Rizvanov, A. A. (2012). Influence of recombinant histone H1.3 on the efficiency of lentiviral transduction of human cells in vitro. Cellular Transplantation and Tissue Engineering, 7(3), 151–154.

    Google Scholar 

  33. Nemerow, G. R., & Stewart, P. L. (1999). Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev, 63(3), 725–734.

    Article  Google Scholar 

  34. Mir, M. A. (2010). Hantaviruses. Clin Lab Med, 30(1), 67–91. https://doi.org/10.1016/j.cll.2010.01.004.

    Article  MathSciNet  Google Scholar 

  35. Gonzalez, S. A., & Affranchino, J. L. (2016). Processing, fusogenicity, virion incorporation and CXCR4-binding activity of a feline immunodeficiency virus envelope glycoprotein lacking the two conserved N-glycosylation sites at the C-terminus of the V3 domain. Arch Virol, 161(7), 1761–1768. https://doi.org/10.1007/s00705-016-2843-6.

    Article  Google Scholar 

  36. Friggeri, A., Banerjee, S., **e, N., Cui, H., De Freitas, A., Zerfaoui, M., Dupont, H., Abraham, E., & Liu, G. (2012). Extracellular histones inhibit efferocytosis. Mol Med, 18, 825–833. https://doi.org/10.2119/molmed.2012.00005.

    Article  Google Scholar 

  37. Haller, O., Staeheli, P., Schwemmle, M., & Kochs, G. (2015). Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol, 23(3), 154–163. https://doi.org/10.1016/j.tim.2014.12.003.

    Article  Google Scholar 

  38. Khaiboullina, S. F., Rizvanov, A. A., Deyde, V. M., & St Jeor, S. C. (2005). Andes virus stimulates interferon-inducible MxA protein expression in endothelial cells. J Med Virol, 75(2), 267–275. https://doi.org/10.1002/jmv.20266.

    Article  Google Scholar 

  39. Kanerva, M., Melen, K., Vaheri, A., & Julkunen, I. (1996). Inhibition of puumala and tula hantaviruses in Vero cells by MxA protein. Virology, 224(1), 55–62. https://doi.org/10.1006/viro.1996.0506.

    Article  Google Scholar 

  40. Geimonen, E., Neff, S., Raymond, T., Kocer, S. S., Gavrilovskaya, I. N., & Mackow, E. R. (2002). Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc Natl Acad Sci USA, 99(21), 13837–13842. https://doi.org/10.1073/pnas.192298899.

    Article  Google Scholar 

  41. Khaiboullina, S. F., Rizvanov, A. A., Otteson, E., Miyazato, A., Maciejewski, J., & St Jeor, S. (2004). Regulation of cellular gene expression in endothelial cells by sin nombre and prospect hill viruses. Viral Immunol, 17(2), 234–251. https://doi.org/10.1089/0882824041310504.

    Article  Google Scholar 

  42. Kvansakul, M., Caria, S., & Hinds, M. G. (2017). The Bcl-2 family in host-virus interactions. Viruses, 9(10). https://doi.org/10.3390/v9100290.

  43. Kang, J. I., Park, S. H., Lee, P. W., & Ahn, B. Y. (1999). Apoptosis is induced by hantaviruses in cultured cells. Virology, 264(1), 99–105. https://doi.org/10.1006/viro.1999.9896.

    Article  Google Scholar 

  44. Li, X. D., Kukkonen, S., Vapalahti, O., Plyusnin, A., Lankinen, H., & Vaheri, A. (2004). Tula hantavirus infection of Vero E6 cells induces apoptosis involving caspase 8 activation. J Gen Virol, 85(Pt 11), 3261–3268. https://doi.org/10.1099/vir.0.80243-0.

    Article  Google Scholar 

  45. Deshauer, C., Morgan, A. M., Ryan, E. O., Handel, T. M., Prestegard, J. H., & Wang, X. (2015). Interactions of the chemokine CCL5/RANTES with medium-sized chondroitin sulfate ligands. Structure, 23(6), 1066–1077. https://doi.org/10.1016/j.str.2015.03.024.

    Article  Google Scholar 

  46. Sokol, C. L., & Luster, A. D. (2015). The chemokine system in innate immunity. Cold Spring Harb Perspect Biol, 7(5). https://doi.org/10.1101/cshperspect.a016303.

  47. Liu, M., Guo, S., Hibbert, J. M., Jain, V., Singh, N., Wilson, N. O., & Stiles, J. K. (2011). CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev, 22(3), 121–130. https://doi.org/10.1016/j.cytogfr.2011.06.001.

    Article  Google Scholar 

  48. Ishiguro, N., Takada, A., Yoshioka, M., Ma, X., Kikuta, H., Kida, H., & Kobayashi, K. (2004). Induction of interferon-inducible protein-10 and monokine induced by interferon-gamma from human endothelial cells infected with Influenza A virus. Arch Virol, 149(1), 17–34. https://doi.org/10.1007/s00705-003-0208-4.

    Article  Google Scholar 

  49. Sundstrom, J. B., McMullan, L. K., Spiropoulou, C. F., Hooper, W. C., Ansari, A. A., Peters, C. J., & Rollin, P. E. (2001). Hantavirus infection induces the expression of RANTES and IP-10 without causing increased permeability in human lung microvascular endothelial cells. J Virol, 75(13), 6070–6085. https://doi.org/10.1128/JVI.75.13.6070-6085.2001.

    Article  Google Scholar 

Download references

Funding

This work was funded by the subsidy allocated to KFU for the state assignment in the sphere of scientific activities and by the Russian Government Program of Competitive Growth of KFU.

Author information

Authors and Affiliations

Authors

Contributions

Daria S. Chulpanova performed qPCR, carried out the data analyses, and wrote the manuscript; Svetlana F. Khaiboullina and Valeriya V. Solovyeva carried out PHV production and A549 cell infection; Svetlana F. Khaiboullina, Valeriya V. Solovyeva, and Albert A. Rizvanov conceived and designed the study; Guzel S. Isaeva and Stephen St. Jeor edited the manuscript; all authors revised the manuscript and approved the final version.

Corresponding author

Correspondence to Albert A. Rizvanov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Research Involving Humans and Animals Statement and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chulpanova, D.S., Solovyeva, V.V., Isaeva, G.S. et al. Recombinant histone H1.3 inhibits orthohantavirus infection in vitro. BioNanoSci. 10, 783–791 (2020). https://doi.org/10.1007/s12668-020-00759-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00759-5

Keywords

Navigation