Log in

Nano-Ordered Cellulose Containing Iα Crystalline Domains Derived from the Algae Chaetomorpha antennina

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nano-crystalline cellulose (NCC) with high content of Iα domains are generated by treatment of cellulose microfibrils from the algae Chaetomorpha antennina with 80 % H2SO4 followed by ethanolic precipitation. X-ray diffraction and FT-IR analyses have revealed that the NCCs produced are highly crystalline and predominantly composed of the Iα allomorph, which indicate the selective dissolution of Iα fragments. AFM images shows that the NCCs produced are of 60–70-nm thickness and of variable length depending on the concentration. The well-dispersed suspension of 1-mg NCC in 10-mL distilled water shows a highly networked structure, which expand its applications over various fields especially in nano-medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sÿturcova, I. H., Apperley, D. C., Sugiyama, J., Jarvis, M. C. (2004). Structural details of crystalline cellulose from higher plants. Biomacromolecules, 5, 1333–1339.

    Article  Google Scholar 

  2. Imai, T., Boisset, C., Samejima, M., Igarashi, K., Sugiyama, J. (1998). Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Letters, 432, 113–116.

    Article  Google Scholar 

  3. Klemm, D., Heublein, B., Fink, H. P., Bohn, A. (2005). Cellulose: fascinating biopoly-mer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358–3393.

    Article  Google Scholar 

  4. Sugiyama, J., Persson, J., Chanzy, H. (1991). Combined Infrared and Electron Diffraction Study of the polymorphism of native celluloses. Macromolecules, 24, 2461–2466.

    Article  Google Scholar 

  5. Horii, F., Hirai, A., Kitamaru, R. (1987). CP/MAS 13C NMR spectra of the crystalline components of native cellulose. Macromolecules, 20, 2117–2120.

    Article  Google Scholar 

  6. Hayashi, N., Ishihara, M., Sugiyama, J., Okano, T. (1998). The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and cotton-ramie type. Carbohydrate Research, 305, 109–116.

    Article  Google Scholar 

  7. Yoshiharu, N., Paul, L., Henri, C. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. Journal of American Chemical Society, 124, 9074–9082.

    Article  Google Scholar 

  8. Sugiyama, J., Okano, T., Yamamoto, H., Horii, F. (1990). Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules, 23, 3196–3198.

    Article  Google Scholar 

  9. Hayashia, N., Kondob, T., Ishiharaa, M. (2005). Enzymatically produced nano-ordered short elements containing cellulose I β crystalline domains. Carbohydrate Polymers, 61, 191–197.

    Article  Google Scholar 

  10. Nishiyama, Y., Sugiyama, J., Chanzy, H., Langan, P. (2003). Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron x-ray and neutron fiber diffraction. Journal of American Chemical Society, 125, 47.

    Article  Google Scholar 

  11. Jackson, J. K., Letchford, K., Wasserman, B. Z., Ye, L., Hamad, W. Y., Burt, H. M. (2011). The use of nanocrystalline cellulose for the binding and controlled release of drugs. International Journal of Nanomedicine, 6, 321–330.

    Google Scholar 

  12. Yamamoto, H., Horii, F., Hirai, A. (1996). In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses Iα and Iβ at the early stage of incubation. Cellulose, 3, 229–242.

    Article  Google Scholar 

  13. Wada, M., Okano, T., Sugiyama, J. (1997). Synchroton radiated x-ray and neutron diffraction study of native cellulose. Cellulose, 3, 221–232.

    Article  Google Scholar 

  14. Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J., Heux, L., Dubrueil, F., Rochas, C. (2008). The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9, 57–65.

    Article  Google Scholar 

  15. Mihranyan, A. (2011). Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. Journal of Applied Polymer Science, 119, 2449–2460.

    Article  Google Scholar 

  16. Barsberg, S. (2010). Prediction of vibrational spectra of polysaccharides simulated IR spectrum of cellulose based on density functional theory (DFT). Journal of Physical Chemistry, 11, 11703–11708.

    Google Scholar 

  17. Debzi, E. M., Chanzy, H., Sugiyama, J., Tekely, P., Excoffier, G. (1991). The Iα/Iβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules, 24, 6816–6822.

    Article  Google Scholar 

  18. Kose, R., Mitani, I., Kasai, W., Kondo, N. (2011). Nanocelluloseas a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. Biomacromolecules, 12, 716–720.

    Article  Google Scholar 

  19. Yamamoto, H., Horii, F., Odani, H. (1989). Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures. Macromolecules, 22, 4130–4132.

    Article  Google Scholar 

  20. Esrafili, M. D., & Ahmadin, H. (2012). DFT study of 17O, 1H and 13C NMR chemical shifts in two forms of native cellulose, Iα and Iβ. Carbohydrate Research, 347, 99–106.

    Article  Google Scholar 

  21. Desiraju, G. R., & Steiner, T. (1999). The weak hydrogen bond. New York: Oxford University Press.

    Google Scholar 

  22. Kalita, R. D., Natha, Y., Ochubiojoa, M. E., Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass, Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B, 108, 85–89.

    Article  Google Scholar 

  23. Kaboorani, A., Riedl, B., Blanchet, P., Fellin, M., Hosseinaei, O., Wang, S. (2012). Nanocrystalline cellulose (NCC): a renewable nano-material for polyvinyl acetate (PVA) adhesive. European Polymer Journal, 48, 1829–1837.

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (SS) is grateful to the financial assistance by CSIR (India). We thank Prof. Jayaraj M.K., department of physics, CUSAT for providing the instrumental facilities, and the Government of Kerala for the financial support received to establish a new centre, Inter University Centre for Development of Marine Biotechnology (IUCDMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.M. Nair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saritha, S., Nair, S. & Kumar, N. Nano-Ordered Cellulose Containing Iα Crystalline Domains Derived from the Algae Chaetomorpha antennina . BioNanoSci. 3, 423–427 (2013). https://doi.org/10.1007/s12668-013-0110-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0110-9

Keywords

Navigation