Log in

A review of advanced cooling methodologies for solar photovoltaic and thermoelectric hybrid energy systems

  • Review Article
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Solar energy has several benefits compared to other renewable energy sources, including ease of accessibility and improved predictability. Heating, desalination, and electricity production are a few applications. The cooling of photovoltaic thermoelectric (PV-TE) hybrid solar energy systems is one method to improve the productive life of such systems with effective solar energy utilization. This review critically analyzes the current cooling technologies' various cooling methods and scope. The cooling methods are primarily air-cooling, liquid cooling, nanofluids, and phase change materials. The distinct factors governing the systems' performance were efficiency, coefficient of performance, exergy, and exergy efficiency. Combining active and passive cooling technologies results in a higher PV cell temperature reduction with enhanced PV efficiency. Forced cooling is more productive by about 30% than natural cooling but is not cost-effective. Experiments conducted with nanofluid increased the exergy generation to a great extent by up to 90%. In addition, related issues, such as overheating PV-TE generators, are discussed and recommendations for future research studies are provided. This review benefits all stakeholders of the solar community by designing effective heat exchangers for solar energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

COP:

Coefficient of performance

CPV:

Concentrated photovoltaic

PCM:

Phase change material

PV:

Photovoltaic

PVT:

Photovoltaic thermal

PV-TE:

Photovoltaic thermoelectric

TE:

Thermoelectric

TEG:

Thermoelectric generator

References

  1. Nižetić, S., Grubišić-Čabo, F., Marinić-Kragić, I., Papadopoulos, A.M.: Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels. Energy 111, 211–225 (2016). https://doi.org/10.1016/j.energy.2016.05.103

    Article  Google Scholar 

  2. Zilli, B.M., Lenz, A.M., de Souza, S.N.M., Secco, D., Nogueira, C.E.C., Junior, O.H.A.: Performance and effect of water-cooling on a microgeneration system of photovoltaic solar energy in Paraná Brazil. J. Clean. Prod. 192, 477–485 (2018). https://doi.org/10.1016/j.jclepro.2018.04.241

    Article  Google Scholar 

  3. Navakrishnan, S., Vengadesan, E., Senthil, R., Dhanalakshmi, S.: An experimental study on simultaneous electricity and heat production from solar PV with thermal energy storage. Energy Convers. Manag. 245, 114614 (2021). https://doi.org/10.1016/j.enconman.2021.114614

    Article  Google Scholar 

  4. Sivakumar, B., Navakrishnan, S., Cibi, M.R., Senthil, R.: Experimental study on the electrical performance of a solar photovoltaic panel by water immersion. Environ. Sci. Pollut. Res. 28(31), 42981–42989 (2021). https://doi.org/10.1007/s11356-021-15228-z

    Article  Google Scholar 

  5. Wang, L., Dang, S., Su, J., Hou, R., Li, Y., Liu, S.: Design of PV/TE hybrid power generation device based on thermal switch and its improving efficiency of power generation. Trans. Chin. Soc. Agric. Eng. 34(14), 196–204 (2018). https://doi.org/10.11975/j.issn.1002-6819.2018.14.025

    Article  Google Scholar 

  6. Yan, J., Sun, F., Chou, S.K., Desideri, U., Li, H., Campana, P.E., **ong, R.: Transformative innovations for a sustainable future. Appl. Energy 204, 867–872 (2017). https://doi.org/10.1016/j.apenergy.2017.09.010

    Article  Google Scholar 

  7. Shoeibi, S., Kargarsharifabad, H., Sadi, M., Arabkoohsar, A., Mirjalily, S.A.A.: A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustain. Energy Technol. Assess. 52, 102105 (2022). https://doi.org/10.1016/j.seta.2022.102105

    Article  Google Scholar 

  8. Abdollahi, N., Rahimi, M.: Using a novel phase change material-based cooling tower for a photovoltaic module cooling. J. Sol. Energy Eng. Trans. ASME 142(2), 4044890 (2020). https://doi.org/10.1115/1.4044890

    Article  Google Scholar 

  9. Pathak, S.K., Sharma, P.O., Goel, V., Bhattacharyya, S., Aybar, H.Ş, Meyer, J.P.: A detailed review on the performance of photovoltaic/thermal system using various cooling methods. Sustain. Energy Technol. Assess. 51, 101844 (2022). https://doi.org/10.1016/j.seta.2021.101844

    Article  Google Scholar 

  10. Baranowski, L.L., Snyder, G.J., Toberer, E.S.: Concentrated solar thermoelectric generators. Energy Environ. Sci. 5(10), 9055–9067 (2012). https://doi.org/10.1039/C2EE22248E

    Article  Google Scholar 

  11. Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., Kirpichnikova, I.: Advanced cooling techniques of P.V. modules: a state of art. Case Stud. Therm. Eng. 21, 100674 (2020). https://doi.org/10.1016/j.csite.2020.100674

    Article  Google Scholar 

  12. Ariffin, M. R., Shafie, S., Hassan, W. Z. W., Azis, N., Ya’acob, M. E.: Conceptual design of hybrid photovoltaic-thermoelectric generator (PV/TEG) for automated greenhouse system. In: 2017 IEEE 15th Student Conference on Research and Development (2018). https://doi.org/10.1109/SCORED.2017.8305373

  13. Babu, C., Ponnambalam, P.: The theoretical performance evaluation of hybrid PV-TEG system. Energy Convers. Manag. 173, 450–460 (2018). https://doi.org/10.1016/j.enconman.2018.07.104

    Article  Google Scholar 

  14. Babu, C., Ponnambalam, P.: The role of thermoelectric generators in the hybrid PV/T systems: a review. Energy Convers. Manag. 151, 368–385 (2017). https://doi.org/10.1016/j.enconman.2017.08.060

    Article  Google Scholar 

  15. Chauhan, A., Tyagi, V.V., Anand, S.: Futuristic approach for thermal management in solar PV/thermal systems with possible applications. Energy Convers. Manag. 163, 314–354 (2018). https://doi.org/10.1016/j.enconman.2018.02.008

    Article  Google Scholar 

  16. Al-Amri, F., Hassanain, N.A.M., Al-Amri, N.F., Alzohbi, G.: An expermental study of solar panel performance using heat pipe and thermoelectric generator. Int. J. Renew. Energy Res. 9(3), 1418–1427 (2019). https://doi.org/10.20508/ijrer.v9i3.9480.g7743

    Article  Google Scholar 

  17. Katekar, V.P., Deshmukh, S.S.: A review on research trends in solar still designs for domestic and industrial applications. J. Clean. Prod. 257, 120544 (2020). https://doi.org/10.1016/j.jclepro.2020.120544

    Article  Google Scholar 

  18. Sahin, A.Z., Ismaila, K.G., Yilbas, B.S., Al-Sharafi, A.: A review on the performance of photovoltaic/thermoelectric hybrid generators. Int. J. Energy Res. 44(5), 3365–3394 (2020). https://doi.org/10.1002/er.5139

    Article  Google Scholar 

  19. Indira, S.S., Vaithilingam, C.A., Chong, K.K., Saidur, R., Faizal, M., Abubakar, S., Paiman, S.: A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator systems. Sol Energy 201, 122–148 (2020). https://doi.org/10.1016/j.solener.2020.02.090

    Article  Google Scholar 

  20. Valera, Á., Rodrigo, P.M., Almonacid, F., Fernández, E.F.: Efficiency improvement of passively cooled micro-scale hybrid CPV-TEG systems at ultra-high concentration levels. Energy Convers. Manag. 244, 114521 (2021). https://doi.org/10.1016/j.enconman.2021.114521

    Article  Google Scholar 

  21. Ahmadi, R., Monadinia, F., Maleki, M.: Passive/active photovoltaic-thermal (PVT) system implementing infiltrated phase change material (PCM) in PS-CNT foam. Sol Energy Mater Sol. Cells 222, 110942 (2021). https://doi.org/10.1016/j.solmat.2020.110942

    Article  Google Scholar 

  22. Ajewole, T.O., Olabode, O.E., Alawode, K.O., Lawal, M.O.: Small-scale electricity generation through thermal harvesting in rooftop photovoltaic picogrid using passively cooled heat conversion devices. Environ. Qual. Manag. 29(4), 95–102 (2020). https://doi.org/10.1002/tqem.21696

    Article  Google Scholar 

  23. Alamri, S. G., Alamri, T., Almutairi, S., Akbar, M.: Evaluating forced versus natural convection for solar concentrating hybrid photovoltaic-thermoelectric power systems made from small up-cycled satellite dishes. In: The ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) 5 (2018). https://doi.org/10.1115/IMECE2017-70839

  24. Lekbir, A., Hassani, S., Ab Ghani, M.R., Gan, C.K., Mekhilef, S., Saidur, R.: Improved energy conversion performance of a novel design of concentrated photovoltaic system combined with thermoelectric generator with advance cooling system. Energy Convers. Manag. 177, 19–29 (2018). https://doi.org/10.1016/j.enconman.2018.09.053

    Article  Google Scholar 

  25. Zhao, B., Hu, M., Ao, X., Xuan, Q., Song, Z., Pei, G.: Is it possible for a photovoltaic-thermoelectric device to generate electricity at night? Sol. Energy Mater Sol. Cells 228, 111136 (2021). https://doi.org/10.1016/j.solmat.2021.111136

    Article  Google Scholar 

  26. Cotfas, D.T., Cotfas, P.A., Mahmoudinezhad, S., Louzazni, M.: Critical factors and parameters for hybrid photovoltaic-thermoelectric systems; review. Appl. Therm. Eng. 215, 118977 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118977

    Article  Google Scholar 

  27. Bicer, Y., Sprotte, A.F.V., Dincer, I.: Concentrated solar light splitting using cold mirrors for photovoltaics and photonic hydrogen production applications. Appl Energy 197, 169–182 (2017). https://doi.org/10.1016/j.apenergy.2017.04.009

    Article  Google Scholar 

  28. Dimri, N., Tiwari, A., Tiwari, G.N.: Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency. Sol. Energy 166, 159–170 (2018). https://doi.org/10.1016/j.solener.2018.03.030

    Article  Google Scholar 

  29. Dimri, N., Tiwari, A., Tiwari, G.N.: Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector. Energy Convers. Manag. 146, 68–77 (2017). https://doi.org/10.1016/j.enconman.2017.05.017

    Article  Google Scholar 

  30. Kiyaee, S., Saboohi, Y., Moshfegh, A.Z.: A new designed linear fresnel lens solar concentrator based on spectral splitting for passive cooling of solar cells. Energy Convers. Manag. 230, 113782 (2021). https://doi.org/10.1016/j.enconman.2020.113782

    Article  Google Scholar 

  31. Meshram, R., Sawarkar, P.D.: CFD Analysis in the Design of Diffuser for Air Cooling of Low-Concentrated Photovoltaic/Thermal (LCPV/T) Solar Collector. Lect. Notes Mech. Eng., pp. 191–198. Springer, Singapore (2020)

    Google Scholar 

  32. Abdelrazik, A.S., Al-Sulaiman, F.A., Saidur, R., Ben-Mansour, R.: Evaluation of the effects of optical filtration and nanoPCM on the performance of a hybrid photovoltaic-thermal solar collector. Energy Convers. Manag. 195, 139–156 (2019). https://doi.org/10.1016/j.enconman.2019.04.083

    Article  Google Scholar 

  33. Akbar, A., Najafi, G., Gorjian, S., Kasaeian, A., Mazlan, M.: Performance enhancement of a hybrid photovoltaic-thermal-thermoelectric (PVT-TE) module using nanofluid-based cooling: indoor experimental tests and multi-objective optimization. Sustain. Energy Technol. Assess. 46, 101276 (2021). https://doi.org/10.1016/j.seta.2021.101276

    Article  Google Scholar 

  34. Soltani, S., Kasaeian, A., Sarrafha, H., Wen, D.: An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol. Energy 155, 1033–1043 (2017). https://doi.org/10.1016/j.solener.2017.06.069

    Article  Google Scholar 

  35. Al-Amri, F., Maatallah, T.S., Al-Amri, O.F., Ali, S., Ali, S., Ateeq, I.S., Zachariah, R., Kayed, T.S.: Innovative technique for achieving uniform temperatures across solar panels using heat pipes and liquid immersion cooling in the harsh climate in the Kingdom of Saudi Arabia. Alex. Eng. J. 61(2), 1413–1424 (2022). https://doi.org/10.1016/j.aej.2021.06.046

    Article  Google Scholar 

  36. Kidegho, G., Kinyua, R., Muriithi, C., Njoka, F.: Innovative solar photovoltaic and thermoelectric power generator for a recirculating aquaculture system. Int. J. Renew. Energy Res. 10(3), 1111–1124 (2020). https://doi.org/10.20508/ijrer.v10i3.10668.g7985

    Article  Google Scholar 

  37. Metwally, H., Mahmoud, N.A., Aboelsoud, W., Ezzat, M.: Yearly performance of the photovoltaic active cooling system using the thermoelectric generator. Case Stud. Therm. Eng. 27, 101252 (2021). https://doi.org/10.1016/j.csite.2021.101252

    Article  Google Scholar 

  38. Sabry, M., Lashin, A., Al Turkestani, M.: Experimental and simulation investigations of CPV/TEG hybrid system. J. King Saud Univ. Sci. 33(2), 101321 (2021). https://doi.org/10.1016/j.jksus.2020.101321

    Article  Google Scholar 

  39. Yin, E., Li, Q., Xuan, Y.: One-day performance evaluation of photovoltaic-thermoelectric hybrid system. Energy 143, 337–346 (2018). https://doi.org/10.1016/j.energy.2017.11.011

    Article  Google Scholar 

  40. Pabon, J.J.G., Khosravi, A., Malekan, M., Sandoval, O.R.: Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system. Renew. Energy 157, 273–289 (2020). https://doi.org/10.1016/j.renene.2020.05.039

    Article  Google Scholar 

  41. Zhang, J., Zhai, H., Wu, Z., Wang, Y., **e, H., Zhang, M.: Enhanced performance of photovoltaic–thermoelectric coupling devices with thermal interface materials. Energy Rep. 6, 116–122 (2020). https://doi.org/10.1016/j.egyr.2019.12.001

    Article  Google Scholar 

  42. Yu, Q., Chen, X., Yang, H.: Research progress on utilization of phase change materials in photovoltaic/thermal systems: a critical review. Renew. Sustain. Energy Rev. 149, 111313 (2021). https://doi.org/10.1016/j.rser.2021.111313

    Article  Google Scholar 

  43. Kandeal, A.W., Thakur, A.K., Elkadeem, M.R., Elmorshedy, M.F., Ullah, Z., Sathyamurthy, R., Sharshir, S.W.: Photovoltaics performance improvement using different cooling methodologies: A state-of-art review. J. Clean. Prod. 273, 122772 (2020). https://doi.org/10.1016/j.jclepro.2020.122772

    Article  Google Scholar 

  44. Khairat Dawood, M.M., Shehata, A.I., Kabeel, A.E., Elharidi, A.M., Abdelsalam Taha, A., Bayoumi, S., Abdalla, A.M.: Increasing the freshwater productivity of a solar still loaded with CuO nanofluids using vibration motion and cover cooling techniques. Int. J. Energy Res. 45(6), 9099–9115 (2021). https://doi.org/10.1002/er.6440

    Article  Google Scholar 

  45. Aboelmaaref, M.M., Zayed, M.E., Elsheikh, A.H., Askalany, A.A., Zhao, J., Li, W., Harby, K., Sadek, S., Ahmed, M.S.: Design and performance analysis of a thermoelectric air-conditioning system driven by solar photovoltaic panels. Proc. Inst. Mech. Eng. Part C 235(20), 5146–5159 (2021). https://doi.org/10.1177/0954406220976164

    Article  Google Scholar 

  46. Bahtiar, B., Zohri, M., Fudholi, A.: Experimental investigation of photovoltaic thermal solar air collector with exergy performance comparison. Indones. J. Electr. Eng. Comput. Sci. 19(2), 652–658 (2020). https://doi.org/10.11591/ijeecs.v19.i2.pp652-658

    Article  Google Scholar 

  47. Bamroongkhan, P., Lertsatitthanakorn, C., Soponronnarit, S.: Experimental performance study of a solar parabolic dish photovoltaic-thermoelectric generator. Energy Proc. 158, 528–553 (2019). https://doi.org/10.1016/j.egypro.2019.01.147

    Article  Google Scholar 

  48. Benghanem, M., Almohammedi, A.: Performance of solar cells using thermoelectric module in hot sites, a practical guide for advanced methods in solar photovoltaic systems. Adv. Struct. Mater. 128, 29–46 (2020). https://doi.org/10.1007/978-3-030-43473-1_2

    Article  Google Scholar 

  49. Daghigh, R., Khaledian, Y.: A novel photovoltaic/thermoelectric collector combined with a dual—evaporator vapor compression system. Energy Convers. Manag. 158, 156–167 (2018). https://doi.org/10.1016/j.enconman.2017.12.067

    Article  Google Scholar 

  50. Lv, S., Ji, Y., Qian, Z., He, W., Hu, Z., Liu, M.: A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler. Energy 219, 119625 (2021). https://doi.org/10.1016/j.energy.2020.119625

    Article  Google Scholar 

  51. Jamali, S., Yari, M., Mahmoudi, S.M.S.: Enhanced power generation through cooling a semi-transparent PV power plant with a solar chimney. Energy Convers. Manag. 175, 227–235 (2018). https://doi.org/10.1016/j.enconman.2018.09.004

    Article  Google Scholar 

  52. Li, D., Guo, J., Zhang, J., Zhan, L., Alizadeh, M.: Numerical assessment of a hybrid energy generation process and energy storage system based on alkaline fuel cell, solar energy and stirling engine. J. Energy Storage 39, 102631 (2021). https://doi.org/10.1016/j.est.2021.102631

    Article  Google Scholar 

  53. Wang, S., Li, W., Fooladi, H.: Performance evaluation of a polygeneration system based on fuel cell technology and solar photovoltaic and use of waste heat. Sustain. Cities Soc. 72, 103055 (2021). https://doi.org/10.1016/j.scs.2021.103055

    Article  Google Scholar 

  54. Mesgarpour, M., Heydari, A., Wongwises, S., Gharib, M.R.: Numerical optimization of a new concept in porous medium considering thermal radiation: photovoltaic panel cooling application. Sol. Energy 216, 452–467 (2021). https://doi.org/10.1016/j.solener.2021.01.035

    Article  Google Scholar 

  55. Vittorini, D., Cipollone, R.: Fin-cooled photovoltaic module modeling—performances map** and electric efficiency assessment under real operating conditions. Energy 167, 159–167 (2019). https://doi.org/10.1016/j.energy.2018.11.001

    Article  Google Scholar 

  56. Rahman, S.M.A., Hachicha, A.A., Ghenai, C., Saidur, R., Said, Z.: Performance and life cycle analysis of a novel portable solar thermoelectric refrigerator. Case Stud. Therm. Eng. 19, 100599 (2020). https://doi.org/10.1016/j.csite.2020.100599

    Article  Google Scholar 

  57. Rajvikram, M., Sivasankar, G.: Experimental study conducted for the identification of best heat absorption and dissipation methodology in solar photovoltaic panel. Sol. Energy 193, 283–292 (2019). https://doi.org/10.1016/j.solener.2019.09.053

    Article  Google Scholar 

  58. Skovajsa, J., Koláček, M., Zálešák, M.: Phase change material based accumulation panels in combination with renewable energy sources and thermoelectric cooling. Energies 10(2), 152 (2017). https://doi.org/10.3390/en10020152

    Article  Google Scholar 

  59. Teffah, K., Zhang, Y.: Modeling and experimental research of hybrid pv-thermoelectric system for high concentrated solar energy conversion. Sol. Energy 157, 10–19 (2017). https://doi.org/10.1016/j.solener.2017.08.017

    Article  Google Scholar 

  60. Liu, Z., Yuan, S., Yuan, Y., Li, G., Wang, Q.: A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon photovoltaic system. Front. Energy 15(2), 358–366 (2021). https://doi.org/10.1007/s11708-020-0712-1

    Article  Google Scholar 

  61. Ren, X., Li, J., Hu, M., Pei, G., Jiao, D., Zhao, X., Ji, J.: Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications. Appl. Energy 252, 113427 (2019). https://doi.org/10.1016/j.apenergy.2019.113427

    Article  Google Scholar 

  62. Shittu, S., Li, G., Zhao, X., Akhlaghi, Y.G., Ma, X., Yu, M.: Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy Convers. Manag. 193, 1–14 (2019). https://doi.org/10.1016/j.enconman.2019.04.055

    Article  Google Scholar 

  63. Abdo, S., Saidani-Scott, H., Borges, B., Abdelrahman, M.A.: Cooling solar panels using saturated activated alumina with saline water: experimental study. Sol. Energy 208, 345–356 (2020). https://doi.org/10.1016/j.solener.2020.07.079

    Article  Google Scholar 

  64. Alelyani, S.M., Bertrand, W.K., Zhang, Z., Phelan, P.E.: Experimental study of an evacuated tube solar adsorption cooling module and its optimal adsorbent bed design. Sol. Energy 211, 183–191 (2020). https://doi.org/10.1016/j.solener.2020.09.044

    Article  Google Scholar 

  65. Al-Nimr, M.A., Mugdadi, B.: A Hybrid absorption/thermo-electric cooling system driven by a concentrated photovoltaic/thermal unit. Sustain. Energy Technol. Assess. 40, 100769 (2020). https://doi.org/10.1016/j.seta.2020.100769

    Article  Google Scholar 

  66. Ali, M.M., Ahmed, O.K., Abbas, E.F.: Performance of solar pond integrated with photovoltaic/thermal collectors. Energy Rep. 6, 3200–3211 (2020). https://doi.org/10.1016/j.egyr.2020.11.037

    Article  Google Scholar 

  67. Dimri, N., Tiwari, A., Tiwari, G.N.: Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors. Renew. Energy 134, 343–356 (2019). https://doi.org/10.1016/j.renene.2018.10.105

    Article  Google Scholar 

  68. Al-Nimr, M.A., Al-Ammari, W.A., Alkhalidi, A.: A novel hybrid photovoltaics/thermoelectric cooler distillation system. Int. J. Energy Res. 43(2), 791–805 (2019). https://doi.org/10.1002/er.4309

    Article  Google Scholar 

  69. Al-Nimr, M.A., Bukhari, M., Mansour, M.: A combined CPV/T and ORC solar Power Generation System Integrated with Geothermal Cooling and electrolyser/fuel Cell Storage Unit. Energy 133, 513–524 (2017). https://doi.org/10.1016/j.energy.2017.05.142

    Article  Google Scholar 

  70. Bevilacqua, P., Perrella, S., Cirone, D., Bruno, R.: Efficiency improvement of photovoltaic modules via back surface cooling. Energies 14(4), 895 (2021). https://doi.org/10.3390/en14040895

    Article  Google Scholar 

  71. Chawla, R., Singhal, P., Garg, A.K.: Internet of things driven framework for smart solar energy system. J. Energy Resour. Technol. (2020). https://doi.org/10.1115/1.4044124

    Article  Google Scholar 

  72. Daghigh, R., Khaledian, Y.: Effective design, theoretical and experimental assessment of a solar thermoelectric cooling-heating system. Sol. Energy 162, 561–572 (2018). https://doi.org/10.1016/j.solener.2018.01.012

    Article  Google Scholar 

  73. Duvenhage, D.F., Brent, A.C., Stafford, W.H.L.: The need to strategically manage csp fleet development and water resources: a structured review and way forward. Renew. Energy 132, 813–825 (2019). https://doi.org/10.1016/j.renene.2018.08.033

    Article  Google Scholar 

  74. Islam, S., Dincer, I., Yilbas, B.S.: A novel renewable energy-based integrated system with thermoelectric generators for a net-zero energy house. Int. J. Energy Res. 44(5), 3458–3477 (2020). https://doi.org/10.1002/er.4986

    Article  Google Scholar 

  75. Islam, S., Dincer, I., Yilbas, B.S.: Development of a novel solar-based integrated system for desalination with heat recovery. Appl. Therm. Eng. 129, 1618–1633 (2018). https://doi.org/10.1016/j.applthermaleng.2017.09.028

    Article  Google Scholar 

  76. Javidan, M., Moghadam, A.J.: Experimental investigation on thermal management of a photovoltaic module using water-jet im**ement cooling. Energy Convers. Manag. 228, 113686 (2021). https://doi.org/10.1016/j.enconman.2020.113686

    Article  Google Scholar 

  77. Lekbir, A., Hassani, S., Ab Ghani, M.R., Gan, C.K., Mekhilef, S., Saidur, R.: Energy performance investigation of nanofluid-based concentrated photovoltaic/thermal-thermoelectric generator hybrid system. Int. J. Energy Res. 45(6), 9039–9057 (2021). https://doi.org/10.1002/er.6436

    Article  Google Scholar 

  78. Rejeb, O., Shittu, S., Li, G., Ghenai, C., Zhao, X., Ménézo, C., Jemni, A., Jomaa, M.H., Bettayeb, M.: Comparative investigation of concentrated photovoltaic thermal-thermoelectric with nanofluid cooling. Energy Convers. Manag. 235, 113968 (2021). https://doi.org/10.1016/j.enconman.2021.113968

    Article  Google Scholar 

  79. Sami, S.: Analysis of nanofluids behavior in a PV-thermal-driven organic Rankine cycle with cooling capability. Appl. Syst. Innov. 3(1), 1–21 (2020). https://doi.org/10.3390/asi3010012

    Article  Google Scholar 

  80. Li, D., Xuan, Y., Yin, E., Li, Q.: Conversion efficiency gain for concentrated triple-junction solar cell system through thermal management. Renew. Energy 126, 960–968 (2018). https://doi.org/10.1016/j.renene.2018.04.027

    Article  Google Scholar 

  81. Sajid, M.U., Bicer, Y.: Comparative life cycle cost analysis of various solar energy-based integrated systems for self-sufficient greenhouses. Sustain. Prod. Consum. 27, 141–156 (2021). https://doi.org/10.1016/j.spc.2020.10.025

    Article  Google Scholar 

  82. Salameh, T., Tawalbeh, M., Juaidi, A., Abdallah, R., Abdul-Kadir, H.: A novel three-dimensional numerical model for PV/T water system in hot climate region. Renew. Energy 164, 1320–1333 (2021). https://doi.org/10.1016/j.renene.2020.10.137

    Article  Google Scholar 

  83. Sohani, A., Shahverdian, M.H., Sayyaadi, H., Hoseinzadeh, S., Memon, S., Piras, G., Garcia, D.A.: Energy and exergy analyses on seasonal comparative evaluation of water flow cooling for improving the performance of monocrystalline PV module in hot-arid climate. Sustainability 13(11), 6084 (2021). https://doi.org/10.3390/su13116084

    Article  Google Scholar 

  84. Sharadga, H., Dawahdeh, A., Al-Nimr, M.A.: A hybrid PV/T and Kalina cycle for power generation. Int. J. Energy Res. 42(15), 4817–4829 (2018). https://doi.org/10.1002/er.4237

    Article  Google Scholar 

  85. Siecker, J., Kusakana, K., Numbi, B.P.: A review of solar photovoltaic systems cooling technologies. Renew. Sustain. Energy Rev. 79, 192–203 (2017). https://doi.org/10.1016/j.rser.2017.05.053

    Article  Google Scholar 

  86. Song, Z., Ji, J., Cai, J., Li, Z., Yu, B.: The performance comparison of the direct-expansion solar assisted heat pumps with three different PV evaporators. Energy Convers. Manag. 213, 112781 (2020). https://doi.org/10.1016/j.enconman.2020.112781

    Article  Google Scholar 

  87. Torbatinezhad, A., Rahimi, M., Ranjbar, A.A., Gorzina, M.: Performance evaluation of PV cells in HCPV/T system by a jet im**ement/mini-channel cooling scheme. Int. J. Heat Mass Transf. 178, 121610 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121610

    Article  Google Scholar 

  88. Wang, Y., Hu, G., Cui, Y., Huang, Q.: Experimental study on cooling performance of solar cells with atmospheric plate thermosyphon. Energy Convers. Manag. 178, 226–234 (2018). https://doi.org/10.1016/j.enconman.2018.10.039

    Article  Google Scholar 

  89. Zanlorenzi, G., Szejka, A.L., Canciglieri, O.: Hybrid photovoltaic module for efficiency improvement through an automatic water cooling system: a prototype case study. J. Clean. Prod. 196, 535–546 (2018). https://doi.org/10.1016/j.jclepro.2018.06.065

    Article  Google Scholar 

  90. Han, Y., Li, M., Wang, Y., Li, G., Ma, X., Wang, R., Wang, L.: Impedance matching control strategy for a solar cooling system directly driven by distributed photovoltaics. Energy 168, 953–965 (2019). https://doi.org/10.1016/j.energy.2018.11.148

    Article  Google Scholar 

  91. Abdo, A., Ookawara, S., Ahmed, M.: Performance evaluation of a new design of concentrator photovoltaic and solar thermoelectric generator hybrid system. Energy Convers. Manag. 195, 1382–1401 (2019). https://doi.org/10.1016/j.enconman.2019.04.093

    Article  Google Scholar 

  92. Sweet, T.K.N., Rolley, M.H., Li, W., Paul, M.C., Johnson, A., Davies, J.I., Tuley, R., Simpson, K., Almonacid, F.M., Fernández, E.F., Knox, A.R.: Design and characterization of hybrid III–V concentrator photovoltaic–thermoelectric receivers under primary and secondary optical elements. Appl. Energy 226, 772–783 (2018). https://doi.org/10.1016/j.apenergy.2018.06.018

    Article  Google Scholar 

  93. Arabkoohsar, A., Behzadi, A., Alsagri, A.S.: Techno-economic analysis and multi-objective optimization of a novel solar-based building energy system; An effort to reach the true meaning of zero-energy buildings. Energy Convers. Manag. 232, 113858 (2021). https://doi.org/10.1016/j.enconman.2021.113858

    Article  Google Scholar 

  94. Fabbri, G., Greppi, M.: Numerical modeling of a new integrated pv-te cooling system and support. Results Eng. 11, 100240 (2021). https://doi.org/10.1016/j.rineng.2021.100240

    Article  Google Scholar 

  95. Sanaye, S., Sarrafi, A.: Cleaner production of combined cooling, heating, power and water for isolated buildings with an innovative hybrid (Solar, Wind and LPG fuel) system. J. Clean. Prod. 279, 123222 (2021). https://doi.org/10.1016/j.jclepro.2020.123222

    Article  Google Scholar 

  96. Behzadi, A., Habibollahzade, A., Ahmadi, P., Gholamian, E., Houshfar, E.: Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production. Energy 169, 696–709 (2019). https://doi.org/10.1016/j.energy.2018.12.047

    Article  Google Scholar 

  97. Contento, G., Lorenzi, B., Rizzo, A., Narducci, D.: Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies. Energy 131, 230–238 (2017). https://doi.org/10.1016/j.energy.2017.05.028

    Article  Google Scholar 

  98. Gu, W., Ma, T., Song, A., Li, M.: Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system. Energy Convers. Manag. 198, 111800 (2019). https://doi.org/10.1016/j.enconman.2019.111800

    Article  Google Scholar 

  99. Cui, T., Xuan, Y., Yin, E., Li, Q.: Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials. Energy 122, 94–102 (2017). https://doi.org/10.1016/j.energy.2017.01.087

    Article  Google Scholar 

  100. Darkwa, J., Calautit, J., Du, D., Kokogianakis, G.: A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells. Appl. Energy 248, 688–701 (2019). https://doi.org/10.1016/j.apenergy.2019.04.147

    Article  Google Scholar 

  101. Rajaee, F., Rad, M.A.V., Kasaeian, A.B., Mahian, O., Yan, W.M.: Experimental analysis of a photovoltaic/thermoelectric generator using cobalt oxide nanofluid and phase change material heat sink. Energy Convers. Manag. 212, 112780 (2020). https://doi.org/10.1016/j.enconman.2020.112780

    Article  Google Scholar 

  102. Daghigh, R., Oramipoor, H., Shahidian, R.: Improving the performance and economic analysis of photovoltaic panel using copper tubular-rectangular ducted heat exchanger. Renew. Energy 156, 1076–1088 (2020). https://doi.org/10.1016/j.renene.2020.04.105

    Article  Google Scholar 

  103. Ejaz, A., Babar, H., Ali, H.M., Jamil, F., Janjua, M.M., Fattah, I.M.R., Said, Z., Li, C.: Concentrated photovoltaics as light harvesters: outlook, recent progress, and challenges. Sustain. Energy Technol. Assess. 46, 101199 (2021). https://doi.org/10.1016/j.seta.2021.101199

    Article  Google Scholar 

  104. El-Samie, M.M.A., Ju, X., Zhang, Z., Adam, S.A., Pan, X., Xu, C.: Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system. Energy 190, 116436 (2020). https://doi.org/10.1016/j.energy.2019.116436

    Article  Google Scholar 

  105. Haidar, Z.A., Orfi, J., Kaneesamkandi, Z.: Photovoltaic panels temperature regulation using evaporative cooling principle: Detailed theoretical and real operating conditions experimental approaches. Energies 14(1), 145 (2021). https://doi.org/10.3390/en14010145

    Article  Google Scholar 

  106. Hammad, W., Sweidan, T.O., Abuashour, M., Khalid, H.M.: Thermal management of grid-tied pv system: a novel active and passive cooling design-based approach. IET Renew. Power Gener. (2021). https://doi.org/10.1049/rpg2.12197

    Article  Google Scholar 

  107. Kidegho, G., Kinyua, R., Muriithi, C., Njoka, F.: Evaluation of thermal interface materials in mediating pv cell temperature mismatch in PV–TEG power generation. Energy Rep. 7, 1636–1650 (2021). https://doi.org/10.1016/j.egyr.2021.03.015

    Article  Google Scholar 

  108. Lashin, A., Turkestani, M.A., Sabry, M.: Concentrated photovoltaic/thermal hybrid system coupled with a thermoelectric generator. Energies 12(13), 2623 (2019). https://doi.org/10.3390/en12132623

    Article  Google Scholar 

  109. Lashin, A., Turkestani, M.A., Sabry, M.: Performance of a thermoelectric generator partially illuminated with highly concentrated light. Energies 13(14), 3627 (2020). https://doi.org/10.3390/en13143627

    Article  Google Scholar 

  110. Yin, E., Li, Q., Xuan, Y.: Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration. Renew. Energy 162, 1828–1841 (2020). https://doi.org/10.1016/j.renene.2020.10.006

    Article  Google Scholar 

  111. Liao, T., He, Q., Xu, Q., Dai, Y., Cheng, C., Ni, M.: Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system. Energy 220, 119798 (2021). https://doi.org/10.1016/j.energy.2021.119798

    Article  Google Scholar 

  112. Nižetić, S., Marinić-Kragić, I., Grubišić-Čabo, F., Papadopoulos, A.M., **e, G.: Analysis of novel passive cooling strategies for free-standing silicon photovoltaic panels. J. Therm. Anal. Calorim. 141(1), 163–175 (2020). https://doi.org/10.1007/s10973-020-09410-7

    Article  Google Scholar 

  113. Shin, G., Jeon, J.G., Kim, J.H., Lee, J.H., Kim, H.J., Lee, J., Kang, K.M., Kang, T.J.: Thermocells for hybrid photovoltaic/thermal systems. Molecules 25(8), 1928 (2020). https://doi.org/10.3390/molecules25081928

    Article  Google Scholar 

  114. Zhang, J., Xuan, Y.: Performance improvement of a photovoltaic—thermoelectric hybrid system subjecting to fluctuant solar radiation. Renew. Energy 113, 1551–1558 (2017). https://doi.org/10.1016/j.renene.2017.07.003

    Article  Google Scholar 

  115. Wu, S.-Y., Zhang, Y.-C., **ao, L., Shen, Z.-G.: Performance comparison investigation on solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions. Int. J. Sustain. Energy 37(6), 533–548 (2018). https://doi.org/10.1080/14786451.2017.1345906

    Article  Google Scholar 

  116. Zaghloul, H., Emam, M., Abdelrahman, M.A., Abd Rabbo, M.F.: Optimization and parametric analysis of a multi-junction high-concentrator PV cell combined with a straight fins heat sink. Energy Convers. Manag. 243, 114382 (2021). https://doi.org/10.1016/j.enconman.2021.114382

    Article  Google Scholar 

  117. Yavuz, A.H.: Solar thermoelectric generator assisted irrigation water pump: design, simulation and economic analysis. Sustain. Energy Technol. Assess. 41, 100786 (2020). https://doi.org/10.1016/j.seta.2020.100786

    Article  Google Scholar 

  118. Zhang, J., Zhai, H., Wu, Z., Wang, Y., **e, H.: Experimental investigation of novel integrated photovoltaic-thermoelectric hybrid devices with enhanced performance. Sol. Energy Mater. Sol. Cells 215, 110666 (2020). https://doi.org/10.1016/j.solmat.2020.110666

    Article  Google Scholar 

  119. Zouak, B., Ardjal, A., Bettayeb, M., Zirmi, R., Belkaid, M. S.: System of cooling and improving power output of photovoltaic solar cells. In: 2020 Advances in Science and Engineering Technology International Conferences, ASET 2020 9118243 (2020). https://doi.org/10.1109/ASET48392.2020.9118243

  120. Yin, E., Li, Q., Xuan, Y.: Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system. Energy Convers. Manag. 143, 188–202 (2017). https://doi.org/10.1016/j.enconman.2017.04.004

    Article  Google Scholar 

  121. Adam, A. G., Yesilata, B.: Use of hybrid photovoltaic-thermoelectric (PV-TE) solar module for enhancing overall system efficiency. In: 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2019—Proceedings (2019). https://doi.org/10.1109/ISMSIT.2019.8932949

  122. Ahmad, F.F., Ghenai, C., Hamid, A.K., Rejeb, O., Bettayeb, M.: Performance enhancement and infra-red (IR) thermography of solar photovoltaic panel using back cooling from the waste air of building centralized air conditioning system. Case Stud. Therm. Eng. 24, 100840 (2021). https://doi.org/10.1016/j.csite.2021.100840

    Article  Google Scholar 

  123. Al-Nimr, M.A., Kiwan, S., Sharadga, H.: Simulation of a novel hybrid solar photovoltaic/wind system to maintain the cell surface temperature and to generate electricity. Int. J. Energy Res. 42(3), 985–998 (2018). https://doi.org/10.1002/er.3885

    Article  Google Scholar 

  124. Al-Waeli, A.H.A., Kazem, H.A., Chaichan, M.T., Sopian, K.: A review of photovoltaic thermal systems: achievements and applications. Int. J. Energy Res. 45(2), 1269–1308 (2021). https://doi.org/10.1002/er.5872

    Article  Google Scholar 

  125. Asefi, G., Habibollahzade, A., Ma, T., Houshfar, E., Wang, R.: Thermal management of building-integrated photovoltaic/thermal systems: a comprehensive review. Sol. Energy 216, 188–210 (2021). https://doi.org/10.1016/j.solener.2021.01.005

    Article  Google Scholar 

  126. Beemkumar, N., Kumar, D.S., Dhass, A., Yuvarajan, D., Kumar, K.T.S.: Impact on the Performance of Solar Photovoltaic System with the Innovative Cooling Techniques. Green Energy and Technol, pp. 97–115. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64565-6_5

    Book  Google Scholar 

  127. Elsheikh, A.H., Sharshir, S.W., Mostafa, M.E., Essa, F.A., Ali, M.K.A.: Applications of nanofluids in solar energy: a review of recent advances. Renew. Sustain. Energy Rev. 82, 3483–3502 (2018). https://doi.org/10.1016/j.rser.2017.10.108

    Article  Google Scholar 

  128. Erzen, S., Açıkkalp, E., Hepbasli, A.: Performance analysis of a solar–hydrogen driven multigeneration system. Energy Rep. 6, 403–408 (2020). https://doi.org/10.1016/j.egyr.2019.08.080

    Article  Google Scholar 

  129. Gharzi, M., Arabhosseini, A., Gholami, Z., Rahmati, M.H.: Progressive cooling technologies of photovoltaic and concentrated photovoltaic modules: a review of fundamentals, thermal aspects, nanotechnology utilization and enhancing performance. Sol. Energy 211, 117–146 (2020). https://doi.org/10.1016/j.solener.2020.09.048

    Article  Google Scholar 

  130. Maghrabie, H.M., Mohamed, A.S.A., Ahmed, M.S.: Experimental investigation of a combined photovoltaic thermal system via air cooling for summer weather of Egypt. J. Therm. Sci. Eng. Appl. 12(4), 4046597 (2020). https://doi.org/10.1115/1.4046597

    Article  Google Scholar 

  131. Manasrah, A.A., Alkhalil, S., Masoud, M.: Investigation of multi-way forced convective cooling on the backside of solar panels. Int. J. Energy Convers. 8(5), 181–189 (2020). https://doi.org/10.15866/irecon.v8i5.19516

    Article  Google Scholar 

  132. Ghadikolaei, S.S.C.: An enviroeconomic review of the solar PV cells cooling technology effect on the CO2 emission reduction. Sol. Energy 216, 468–492 (2021). https://doi.org/10.1016/j.solener.2021.01.016

    Article  Google Scholar 

  133. Sainthiya, H., Beniwal, N.S.: Thermal modeling and performance analysis of a hybrid photovoltaic/thermal system under combined surface water cooling in winter season: an experimental approach. J. Energy Resour. Technol. 142(1), 4045082 (2020). https://doi.org/10.1115/1.4045082

    Article  Google Scholar 

  134. Salvi, S.S., Bhalla, V., Taylor, R.A., Khullar, V., Otanicar, T.P., Phelan, P.E., Tyagi, H.: Technological advances to maximize solar collector energy output: a review. J. Electron. Packag. 140(4), 4041219 (2018). https://doi.org/10.1115/1.4041219

    Article  Google Scholar 

  135. Shetty, S.P., Abishek, K., Pramodh, K., Madhwesh, N., Karanth, K.V.: Experimental analysis of thermoelectric heat exchanger powered by solar energy. Energy Convers. Manag. 228, 113687 (2021). https://doi.org/10.1016/j.enconman.2020.113687

    Article  Google Scholar 

  136. Tan, L., Date, A., Zhang, B., Singh, B., Ganguly, S.: A comparative case study of remote area power supply systems using photovoltaic-battery vs thermoelectric-battery configuration. Energy Proc. 110, 111 (2017). https://doi.org/10.1016/j.egypro.2017.03.111

    Article  Google Scholar 

  137. Asvad, M., Gorji, M., Mahdavi, A.: Performance analysis of a solar module with different reflectors and cooling flow fields. Appl. Therm. Eng. 219, 119469 (2023). https://doi.org/10.1016/j.applthermaleng.2022.119469

    Article  Google Scholar 

  138. Hossen, M.D., Islam, M.F., Ishraque, M.F., Shezan, S.A., Arifuzzaman, S.: Design and implementation of a hybrid solar-wind-biomass renewable energy system considering meteorological conditions with the power system performances. Int. J. Photoenergy (2022). https://doi.org/10.1155/2022/8792732

    Article  Google Scholar 

  139. Kumar, P.P., Nuvvula, R.S.S., Hossain, M.A., Shezan, S.A., Suresh, V., Jasinski, M., Gono, R., Leonowicz, Z.: Optimal operation of an integrated hybrid renewable energy system with demand-side management in a rural context. Energies 15(14), 5176 (2022). https://doi.org/10.3390/en15145176

    Article  Google Scholar 

  140. Muppidi, R., Nuvvula, R.S., Muyeen, S., Shezan, S.A., Ishraque, M.F.: Optimization of a fuel cost and enrichment of line loadability for a transmission system by using rapid voltage stability index and grey wolf algorithm technique. Sustainability 14(7), 4347 (2022). https://doi.org/10.3390/su14074347

    Article  Google Scholar 

  141. Shezan, S.A., Ishraque, M.F., Muyeen, S.M., Abu-Siada, A., Saidur, R., Ali, M.M., Rashid, M.M.: Selection of the best dispatch strategy considering techno-economic and system stability analysis with optimal sizing. Energy Strategy Rev. 43, 100923 (2022). https://doi.org/10.1016/j.esr.2022.100923

    Article  Google Scholar 

  142. Shezan, S.A., Ishraque, M.F., Muyeen, S.M., Arifuzzaman, S.M., Chandra Paul, L., Das, S.K., Sarker, S.K.: Effective dispatch strategies assortment according to the effect of the operation for an islanded hybrid microgrid. Energy Convers. Manag. X 14, 100192 (2022). https://doi.org/10.1016/j.ecmx.2022.100192

    Article  Google Scholar 

  143. Shezan, S.A., Ishraque, M.F., Chandrapaul, L., Sarkar, M.R., Rana, M.M., Uddin, M., Hossain, M.B., Shobug, M.A., Hossain, M.I.: Assortment of dispatch strategies with the optimization of an islanded hybrid microgrid. MIST Int. J. Sci. Technol. 10(1), 15–24 (2022). https://doi.org/10.47981/j.mijst.10(01)2022.318(15-24)

    Article  Google Scholar 

  144. Farh, H.M., Al-Shamma’a, A.A., Al-Shaalan, A.M., Alkuhayli, A., Noman, A.M., Kandil, T.: Technical and economic evaluation for off-grid hybrid renewable energy system using novel bonobo optimizer. Sustainability 14(3), 1533 (2022). https://doi.org/10.3390/su14031533

    Article  Google Scholar 

  145. Samy, M., Almamlook, R.E., Elkhouly, H.I., Barakat, S.: Decision-making and optimal design of green energy system based on statistical methods and artificial neural network approaches. Sustain. Cities Soc. 84, 104015 (2022). https://doi.org/10.1016/j.scs.2022.104015

    Article  Google Scholar 

  146. Cai, W., Li, C., Agbossou, K., Bénard, P., **ao, J.: A review of hydrogen-based hybrid renewable energy systems: simulation and optimization with artificial intelligence. J. Phys. Conf. Ser. 2208(1), 012012 (2022). https://doi.org/10.1088/1742-6596/2208/1/012012

    Article  Google Scholar 

  147. Senthil, R.: Recent innovations in solar energy education and research towards sustainable energy development. Acta Innov. 42, 27–49 (2022). https://doi.org/10.32933/ActaInnovations.42.3

    Article  Google Scholar 

  148. Senthil, R.: A technical note on integrating thermal energy systems into solar photovoltaic panels toward a circular economy. Renew. Energy Focus 42, 97–100 (2022). https://doi.org/10.1016/j.ref.2022.06.002

    Article  Google Scholar 

  149. Daniela-Abigail, H., Tariq, R., Mekaoui, A.E., Bassam, A., Vegadelille, M., Ricalde, L.J., Riech, I.: Does recycling solar panels make this renewable resource sustainable? Evidence supported by environmental, economic, and social dimensions. Sustain. Cities Soc. 77, 103539 (2022). https://doi.org/10.1016/j.scs.2021.103539

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the SRM Institute of Science and Technology, Kattankulathur Campus, Chennai, for supplying the required infrastructure.

Funding

This research received no specific grants.

Author information

Authors and Affiliations

Authors

Contributions

AM: Conceptualization, formal analysis, methodology, investigation, original draft-writing, BB: Conceptualization, formal analysis, methodology, investigation, original draft-writing, SB: Conceptualization, formal analysis, methodology, investigation, original draft-writing, YS: Conceptualization, formal analysis, methodology, investigation, original draft-writing, RS: Conceptualization, data visualization, data validation, writing—review and editing, supervision.

Corresponding author

Correspondence to Ramalingam Senthil.

Ethics declarations

Conflict of interest

The authors declare that there is no potential conflict of interest.

Ethics approval and consent to participate

The reported studies did not involve human participants and human data.

Consent for publication

This does not involve any individual’s data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Barat, B., Balaji, S. et al. A review of advanced cooling methodologies for solar photovoltaic and thermoelectric hybrid energy systems. Energy Syst (2023). https://doi.org/10.1007/s12667-023-00622-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-023-00622-y

Keywords

Navigation