Log in

In Vitro Corrosion Behavior of Zr-Containing MAO-PLA Composite Coating on Magnesium Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

To improve the corrosion resistance of magnesium alloy as a medical implant, a Zr-containing micro-arc oxidation-polylactic acid (MAO-PLA) composite coating was successfully prepared. The microstructure, phase composition, and corrosion resistance of the coating were studied by scanning electron microscope, X-ray diffractometer, and electrochemical workstation. The results show that the micropores and cracks on the surface of MAO coating can be sealed by PLA, which makes the corrosion rate of the sealed sample minimum. And, in the process of immersion corrosion of simulated body fluid (SBF), calcium and phosphorus deposits are formed on the surface of the composite coating, and PLA coating plays a major role in protecting the substrate. The composite coating can be applied to degradable magnesium-based orthopedic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lou J, Sun Y, Chen Y D, Zan R, Peng H Z, Yang S, Kang X B, Peng Z X, Wang W H, and Zhang X N, Surf Coat Technol 422 (2021) 127552. https://doi.org/10.1016/j.surfcoat.2021.127552

    Article  CAS  Google Scholar 

  2. Shao Z, **a J, Jiang H, Li G, and Zhang Y, Mater Technol 32 (2017) 156. https://doi.org/10.1179/1753555715Y.0000000077

    Article  CAS  Google Scholar 

  3. Zreiqat H, and Valenzuela S M, Biomater 26 (2005) 7579. https://doi.org/10.1016/j.biomaterials.2005.05.024

    Article  CAS  Google Scholar 

  4. Bowen P K, Drelich J, and Goldman J, Adv Mater 25 (2013) 2577. https://doi.org/10.1002/adma.201300226

    Article  CAS  Google Scholar 

  5. Su Y C, Guo Y T, Huang Z L, Zhang Z H, Li G Y, Lian J S, and Ren L Q, Surf Coat Technol 307 (2016) 99. https://doi.org/10.1016/j.surfcoat.2016.08.065

    Article  CAS  Google Scholar 

  6. Hampp C, Angrisani N, and Reifenrath J, Mater Sci Eng 33 (2013) 317. https://doi.org/10.1016/j.msec.2012.08.046

    Article  CAS  Google Scholar 

  7. Vignesh R, Sakthinathan G, Velusamy R, and Ramakrishna S, Surf Coat Technol 411 (2021) 126972. https://doi.org/10.1016/j.surfcoat.2021.126972

    Article  CAS  Google Scholar 

  8. Daavari M, Mohedano M, Sánchez H M, Rodríguez-Hernández J, Matykina E, Arrabal R, and Taherizadeh A, J Magnes Alloy (2021). https://doi.org/10.1016/j.jma.2021.09.010

    Article  Google Scholar 

  9. Chen X W, Li M L, Zhang D F, Cai L P, Ren P, Hu J, and Liao D D, Surf Coat Technol 433 (2022) 128127. https://doi.org/10.1016/j.surfcoat.2022.128127

    Article  CAS  Google Scholar 

  10. **ong Y, Hu Q, Hu X X, and Song R G, Surf Coat Technol 325 (2017) 239. https://doi.org/10.1016/j.surfcoat.2017.06.055

    Article  CAS  Google Scholar 

  11. Zhang R F, Zhang Z Y, and Zhu Y Y, Coatings 10 (2020) 1138. https://doi.org/10.3390/coatings10111138

    Article  CAS  Google Scholar 

  12. Wang Q, Tan L L, and Yang K, Mater Sci Technol 31 (2015) 845. https://doi.org/10.1016/j.jmst.2015.07.008

    Article  CAS  Google Scholar 

  13. Chu C L, Han X, Bai J, Xue F, and Chu P K, Surf Coat Technol 213 (2012) 307. https://doi.org/10.1016/j.surfcoat.2012.10.078

    Article  CAS  Google Scholar 

  14. Chen X W, Hu J, Zhang D F, Ren P, Liao D D, and Cai L P, Int J Appl Ceram Technol 19 (2022) 397. https://doi.org/10.1111/ijac.13891

    Article  CAS  Google Scholar 

  15. ** J, Chen X H, and Zhou S W, Mater Technol (2020). https://doi.org/10.1080/10667857.2020.1863556

    Article  Google Scholar 

  16. Cui L Y, Xu J, and Lu N, Trans Nonferrous Met Soc China 27 (2017) 1081. https://doi.org/10.1016/S1003-6326(17)60126-2

    Article  CAS  Google Scholar 

  17. Li L H, Narayanan T S N S, and Kim Y K, Thin Solid Films 562 (2014) 561. https://doi.org/10.1016/j.tsf.2014.04.004

    Article  CAS  Google Scholar 

  18. ** J, Zhou S, and Duan H, Surf Coat Technol 349 (2018) 50. https://doi.org/10.1016/j.surfcoat.2018.05.043

    Article  CAS  Google Scholar 

  19. Zeng R C, Cui L Y, Jiang K, Liu R, Zhao B D, and Zheng Y F, ACS Appl Mater Interfaces 8 (2016) 10014. https://doi.org/10.1021/acsami.6b00527

    Article  CAS  Google Scholar 

  20. Chen Y, Song Y, Zhang S X, Li J N, Zhao C L, and Zhang X N, Biomed Mater 6 (2011) 1. https://doi.org/10.1088/1748-6041/6/2/025005

    Article  CAS  Google Scholar 

  21. Zhu Y W, Zheng L Z, Liu W, Qin L, and Ngai T, ACS Appl Bio Mater 3 (2020) 1364. https://doi.org/10.1021/acsabm.9b00983

    Article  CAS  Google Scholar 

  22. Li Z, Electroplat Finish (2011). https://doi.org/10.19289/j.1004-227x.2011.06.009

    Article  Google Scholar 

  23. Li D, Zhang L H, Wen K, and Wang X C, Mater Sci Tech-Lond 29 (2021) 30.

    Google Scholar 

  24. Han L Y, Chen Y, Li X, Chu C L, and Lin P H, Surf Technol 46 (2017) 1. https://doi.org/10.16490/j.cnki.issn.1001-3660.2017.03.001

    Article  Google Scholar 

  25. Shi P, Niu B, Shanshan E, Chen Y, and Li Q, Surf Coat Technol 262 (2015) 26. https://doi.org/10.1016/j.surfcoat.2014.11.069

    Article  CAS  Google Scholar 

  26. ASTM-G31.Standard guide for laboratory immersion corrosion testing of metals[S].2012.10.15

  27. Rehman Z U, Shin S H, Hussain I, and Koo B H, Surf Coat Technol 307 (2016) 484. https://doi.org/10.1016/j.surfcoat.2016.09.030

    Article  CAS  Google Scholar 

  28. Song Y, Zhang S X, Li J N, Zhao C L, and Zhang X N, Acta Biomater 6 (2010) 1736. https://doi.org/10.1016/j.actbio.2009.12.020

    Article  CAS  Google Scholar 

  29. Seyfoori A, Mirdamadi S, and Khavandi A, Appl Surf Sci 261 (2012) 92. https://doi.org/10.1016/j.apsusc.2012.07.105

    Article  CAS  Google Scholar 

  30. **ong Y, Hu Q, Song R G, and Hu X X, Mater Sci Eng 75 (2017) 1299. https://doi.org/10.1016/j.msec.2017.03.003

    Article  CAS  Google Scholar 

  31. Zheng X H, Liu Q, Ma H J, Das S, Gu Y H, and Zhang L, Surf Coat Technol 347 (2018) 286. https://doi.org/10.1016/j.surfcoat.2018.05.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (Dr. Chen) is thankful to the National Natural Science Foundation of China (No 51774249) and the Open Fund (PLN2021-22) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University) for carrying out this research investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X.W., Cai, L.P., Zhang, D.F. et al. In Vitro Corrosion Behavior of Zr-Containing MAO-PLA Composite Coating on Magnesium Alloy. Trans Indian Inst Met 76, 2123–2130 (2023). https://doi.org/10.1007/s12666-023-02933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02933-1

Keywords

Navigation