Log in

Numerical modeling of two-phase flow in deformable porous media: application to CO\(_2\) injection analysis in the Otway Basin, Australia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

We examined the two-phase hydro-mechanical coupled process for subsurface applications. First, we exclusively derived governing equations for capillary pressure of the wetting fluid and pressure of the non-wetting fluid as a primary variable to make use of the global finite element model in the two-phase flow system. For the coupling process based on the derivation, we developed a module to couple the two-phase flow and the mechanical deformation for numerical modeling. For the verification of the coupling module, we solved a benchmark problem, which has an analytical solution for a single-phase hydro-mechanical system. To compare the results with those produced with the same coupling scheme of an existing module, we addressed the same benchmark problem with TOUGH–FLAC. After verification, we demonstrated the module for the two-phase hydro-mechanical coupled application of CO\(_2\) storage at the field scale, the Otway Basin, Australia. The formation of caprock and reservoir in lithology had a significant effect on the movement of the CO\(_2\) plume, providing a predominant pathway. Based on the mechanical analysis at the core of the CO\(_2\) plume, the amount of pore pressure increase during the CO\(_2\) injection period did not lead to noticeable damage in the formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430

    Article  Google Scholar 

  • Armero F, Simo J (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35(4):737–766

    Article  Google Scholar 

  • Benisch K, Graupner B, Bauer S (2013) The coupled opengeosys-eclipse simulator for simulation of co2 storage-code comparison for fluid flow and geomechanical processes. Energy Proc 37:3663–3671

    Article  Google Scholar 

  • Bilke L, Flemisch B, Kalbacher T, Kolditz O, Helmig R, Nagel T (2019) Development of open-source porous media simulators: principles and experiences. Trans Porous Media 130(1):337–361

    Article  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  Google Scholar 

  • Biot MA, Willis D (1957) The elastic coeff cients of the theory of consolidation. J Appl Mech 24:594–601

    Article  Google Scholar 

  • Birkholzer J, Zhou Q, Cortis A, Finsterle S (2011) A sensitivity study on regional pressure buildup from large-scale co2 storage projects. Energy Proc 4:4371–4378

    Article  Google Scholar 

  • Bissell R, Vasco D, Atbi M, Hamdani M, Okwelegbe M, Goldwater M (2011) A full field simulation of the in salah gas production and co2 storage project using a coupled geo-mechanical and thermal fluid flow simulator. Energy Proc 4:3290–3297

    Article  Google Scholar 

  • Bonduà S, Battistelli A, Berry P, Bortolotti V, Consonni A, Cormio C, Geloni C, Vasini EM (2017) 3d voronoi grid dedicated software for modeling gas migration in deep layered sedimentary formations with tough2-tmgas. Comput Geosci 108:50–55

    Article  Google Scholar 

  • Brooks R, Corey A (1964) Hydraulic properties of porous media. Hydrology Papers, Colorado State University (March)

  • Cavallo A (2007) Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (caes). Energy 32(2):120–127

    Article  Google Scholar 

  • Chin L, Raghavan R, Thomas L et al (1998) Fully-coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability. SPE Journal

  • Croucher AE, O’Sullivan MJ (2013) Approaches to local grid refinement in tough2 models. In: 35th New Zealand Geothermal Workshop, Rotorua, Nov, pp 17–20

  • Dance T (2013) Assessment and geological characterisation of the co2crc otway project co2 storage demonstration site: From prefeasibility to injection. Marine Petroleum Geol 46:251–269

    Article  Google Scholar 

  • Daniel R, Bunch M (2011) Characterisation of dolomitic intraformational barriers, crc-2b injection interval, paaratte formation, co2crc, otway project, victoria. CO2CRC Symposium

  • Davies J, Davies D et al (1999) Stress-dependent permeability: characterization and modeling. SPE Journal

  • Detournay E, Cheng AHD (1993) Fundamentals of poroelasticity. In: Analysis and design methods, Elsevier, pp 113–171

  • Dong JJ, Hsu JY, Wu WJ, Shimamoto T, Hung JH, Yeh EC, Wu YH, Sone H (2010) Stress-dependence of the permeability and porosity of sandstone and shale from tcdp hole-a. Int J Rock Mech Min Sci 47(7):1141–1157

    Article  Google Scholar 

  • Ellsworth WL (2013) Injection-induced earthquakes. Science 341(6142):1225942

    Article  Google Scholar 

  • Elyasi A, Goshtasbi K, Hashemolhosseini H, Barati S (2016) Coupled solid and fluid mechanics simulation for estimating optimum injection pressure during reservoir co2-eor. Struct Eng Mech 59(1):37–57

    Article  Google Scholar 

  • Fairhurst C (2004) Nuclear waste disposal and rock mechanics: contributions of the underground research laboratory (url), pinawa, manitoba, canada. Int J Rock Mech Min Sci 41(8):1221–1227

    Article  Google Scholar 

  • Feng W, Were P, Li M, Hou Z, Zhou L (2016) Numerical study on hydraulic fracturing in tight gas formation in consideration of thermal effects and thm coupled processes. J Petrol Sci Eng 146:241–254

    Article  Google Scholar 

  • Figueiredo B, Tsang CF, Rutqvist J, Bensabat J, Niemi A (2015) Coupled hydro-mechanical processes and fault reactivation induced by co2 injection in a three-layer storage formation. Int J Greenhouse Gas Control 39:432–448

    Article  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) An overview of unsaturated soil behaviour. Geotechnical special publication pp 1–1

  • van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Geuzaine C, Remacle JF (2009) Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  Google Scholar 

  • Grazzini G, Milazzo A (2008) Thermodynamic analysis of caes/tes systems for renewable energy plants. Renew Energy 33(9):1998–2006

    Article  Google Scholar 

  • Grigoli F, Cesca S, Rinaldi AP, Manconi A, Lopez-Comino JA, Clinton J, Westaway R, Dahm T, Wiemer S (2018) The november 2017 mw 5.5 pohang earthquake: A possible case of induced seismicity in south korea. Science 360(6392):1003–1006

    Article  Google Scholar 

  • Itasca F (2013) Fast lagrangian analysis of continua in 3 dimensions. Online Manual

  • Jaeger J, Cook NG, Zimmerman R (2009) Fundamentals of rock mechanics. Wiley, Hoboken

    Google Scholar 

  • Jha B, Juanes R (2014) Coupled multiphase flow and poromechanics: a computational model of pore pressure effects on fault slip and earthquake triggering. Water Resources Res 50(5):3776–3808

    Article  Google Scholar 

  • Jia Cj Xu, Wy Wang Hl, Wang Rb YuJ, Yan L (2017) Stress dependent permeability and porosity of low-permeability rock. J Central South Univ 24(10):2396–2405

    Article  Google Scholar 

  • **g L, Tsang CF, Stephansson O (1995) Decovalex–an international co-operative research project on mathematical models of coupled thm processes for safety analysis of radioactive waste repositories. Int J Rock Mech Min Sci Geomech Abstracts 32(5):389–398

    Article  Google Scholar 

  • Kim HM, Rutqvist J, Ryu DW, Choi BH, Sunwoo C, Song WK (2012) Exploring the concept of compressed air energy storage (caes) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance. Appl Energy 92:653–667

    Article  Google Scholar 

  • Kim J, Tchelepi HA, Juanes R (2011a) Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput Methods Appl Mech Eng 200(13–16):1591–1606

    Article  Google Scholar 

  • Kim J, Tchelepi HA, Juanes R et al (2013) Rigorous coupling of geomechanics and multiphase flow with strong capillarity. SPE J 18(06):1–123

    Article  Google Scholar 

  • Kim JS, Kwon SK, Sanchez M, Cho GC (2011b) Geological storage of high level nuclear waste. KSCE J Civ Eng 15(4):721–737

    Article  Google Scholar 

  • Kim SK, Bae GO, Lee KK (2015) Improving accuracy and flexibility of numerical simulation of geothermal heat pump systems using voronoi grid refinement approach. Geosci J 19(3):527–535

    Article  Google Scholar 

  • Kitware, ASC, Sandia National Laboratories, Los Alamos National Laboratory, ARL (2019) Paraview. https://www.paraview.org

  • Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott C et al (2012a) Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (thm/c) processes in porous media. Environ Earth Sci 67(2):589–599

    Article  Google Scholar 

  • Kolditz O, Bauer S, Böttcher N, Elsworth D, Görke UJ, McDermott CI, Park CH, Singh AK, Taron J, Wang W (2012b) Numerical simulation of two-phase flow in deformable porous media: application to carbon dioxide storage in the subsurface. Math Comput Simul 82(10):1919–1935

    Article  Google Scholar 

  • Kolditz O, Görke UJ, Shao H, Wang W (2012c) Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples, vol 86. Springer Science & Business Media, Berlin

    Google Scholar 

  • Kolditz O, Shao H, Wang W, Bauer S (2016) Thermo-hydro-mechanical Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Springer, Berlination

    Book  Google Scholar 

  • Kwon S, Lee C (2019) Thermal-hydraulic-mechanical coupling analysis using flac3d-tough2 for an in situ heater test at horonobe underground research laboratory. Geosyst Eng 22(5):289–298

    Article  Google Scholar 

  • Lawrence M, Arnot M, Browne G, Bunch M, Menacherry S, Dance T (2012) Geological interpretation of otway project well crc-1 and crc-2. CO2CRC Publication 358

  • Lee J, Kim KI, Min KB, Rutqvist J (2019) Tough-udec: a simulator for coupled multiphase fluid flows, heat transfers and discontinuous deformations in fractured porous media. Comput Geosci 126:120–130

    Article  Google Scholar 

  • Lewis R, Roberts P, Schrefler B (1989) Finite element modelling of two-phase heat and fluid flow in deforming porous media. Trans Porous Media 4(4):319–334

    Article  Google Scholar 

  • MacDonald J (1964) Accelerated convergence, divergence, iteration, extrapolation, and curve fitting. J Appl Phys 10:3034–3041

    Article  Google Scholar 

  • Mainguy M, Longuemare P (2002) Coupling fluid flow and rock mechanics: formulations of the partial coupling between reservoir and geomechanical simulators. Oil Gas Sci Technol 57(4):355–367

    Article  Google Scholar 

  • Mayor JC, Velasco M, García-Siñeriz JL (2007) Ventilation experiment in the mont terri underground laboratory. Phys Chem Earth Parts A/B/C 32(8–14):616–628

    Article  Google Scholar 

  • Merxhani A (2016) An introduction to linear poroelasticity. ar**v preprint ar**v:160704274

  • Naderi S, Simjoo M (2019) Numerical study of low salinity water alternating co2 injection for enhancing oil recovery in a sandstone reservoir: Coupled geochemical and fluid flow modeling. J Petroleum Sci Eng 173:279–286

    Article  Google Scholar 

  • Nordbotten JM, Flemisch B, Gasda S, Nilsen H, Fan Y, Pickup GE, Wiese B, Celia MA, Dahle H, Eigestad G et al (2012) Uncertainties in practical simulation of co2 storage. Int J Greenhouse Gas Control 9:234–242

    Article  Google Scholar 

  • Nur A, Byerlee J (1971) An exact effective stress law for elastic deformation of rock with fluids. J Geophys Res 76(26):6414–6419

    Article  Google Scholar 

  • Parisio F, Vilarrasa V, Wang W, Kolditz O, Nagel T (2019) The risks of long-term re-injection in supercritical geothermal systems. Nat Commun 10(1):1–11

    Article  Google Scholar 

  • Park CH, Böttcher N, Wang W, Kolditz O (2011) Are upwind techniques in multi-phase flow models necessary? J Comput Phys 230(22):8304–8312

    Article  Google Scholar 

  • Park CH, Shinn Y, Park YC, Huh DG, Lee S (2014) Pet2ogs: Algorithms to link the static model of petrel with the dynamic model of opengeosys. Comput Geosci 62:95–102

    Article  Google Scholar 

  • Park CH, Kim T, Park ES, Jung YB, Bang ES (2019) Development and verification of ogsflac simulator for hydromechanical coupled analysis: single-phase fluid flow analysis. Tunnel Underground Space 29(6):468–479

    Google Scholar 

  • Park J, Shinn Y, Rutqvist J, Cheon D, Park E (2016) Coupled hydrological-mechanical behavior induced by co2 injection into the saline aquifer of co2crc otway project. Tunnel Underground Space 26:166–180

    Article  Google Scholar 

  • Paterson L, Boreham C, Bunch M, Ennis-King J, Freifeld B, Haese R, Jenkins C, Raab M, Singh R, Stalker L (2011) The co2crc otway stage 2b residual saturation and dissolution test: test concept, implementation and data collected. Milestone Report to ANLEC

  • Petrel E (2012) Software platform, 2011. software package for oil and gas exploration and production developed by schlumberger limited

  • Pettersen Ø (2006) Basics of reservoir simulation with the eclipse reservoir simulator. Lecture Notes University of Bergen, Norway p 114

  • Pruess K, Oldenburg CM, Moridis G (1999) Tough2 user’s guide version 2. Tech. rep., Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States)

  • Ringrose P, Mathieson A, Wright I, Selama F, Hansen O, Bissell R, Saoula N, Midgley J (2013) The in salah co2 storage project: lessons learned and knowledge transfer. Energy Proc 37:6226–6236

    Article  Google Scholar 

  • van Ruth P, Tenthorey E, Vidal-Gilbert S (2007) Geomechanical analysis of the naylor structure, otway basin. Australia, Pre-Injection Cooperative Research Centre for Greenhouse Gas Technologies, Canberra, Australia, CO2CRC Publication Number RPT07-0966 27pp

  • Rutqvist J (2011) Status of the tough-flac simulator and recent applications related to coupled fluid flow and crustal deformations. Comput Geosci 37(6):739–750

    Article  Google Scholar 

  • Rutqvist J, Wu YS, Tsang CF, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39(4):429–442

    Article  Google Scholar 

  • Rutqvist J, Vasco DW, Myer L (2010) Coupled reservoir-geomechanical analysis of co2 injection and ground deformations at in salah, algeria. Int J Greenhouse Gas Control 4(2):225–230

    Article  Google Scholar 

  • Sharma S, Cook P, Berly T, Lees M (2009) The co2crc otway project: overcoming challenges from planning to execution of australia’s first ccs project. Energy Proc 1(1):1965–1972

    Article  Google Scholar 

  • Sharma S, Cook P, Jenkins C, Steeper T, Lees M, Ranasinghe N (2011) The co2crc otway project: leveraging experience and exploiting new opportunities at australia’s first ccs project site. Energy Proc 4:5447–5454

    Article  Google Scholar 

  • Soltanzadeh H, Hawkes CD (2009) Assessing fault reactivation tendency within and surrounding porous reservoirs during fluid production or injection. Int J Rock Mech Mining Sci 46(1):1–7

    Article  Google Scholar 

  • Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 k at pressures up to 800 mpa. J Phys Chem Reference Data 25:1509

    Article  Google Scholar 

  • Taron J, Elsworth D, Min KB (2009) Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. Int J Rock Mech Mining Sci 46(5):842–854

    Article  Google Scholar 

  • Tenthorey E, John Z, Nguyen D (2010) Crc-2 extended leak-off and mini-frac tests: results and implications. CO2CRC Report RPT10-2228 p 32

  • Tsang CF, Rutqvist J, Min KB (2007) Fractured rock hydromechanics: from borehole testing to solute transport and co2 storage. Geol Soc Lond Special Publ 284(1):15–34

    Article  Google Scholar 

  • Underschultz J, Boreham C, Dance T, Stalker L, Freifeld B, Kirste D, Ennis-King J (2011) Co2 storage in a depleted gas field: an overview of the co2crc otway project and initial results. Int J Greenhouse Gas Control 5(4):922–932

    Article  Google Scholar 

  • Vilarrasa Riaño V, Carrera Ramírez J, Olivella Pastallé S, Rutqvist J, Laloui L (2019) Induced seismicity in geologic carbon storage. Solid Earth 10(3):871–892

    Article  Google Scholar 

  • Wiese B, Nimtz M, Klatt M, Kühn M (2010) Sensitivities of injection rates for single well co2 injection into saline aquifers. Geochemistry 70:165–172

    Article  Google Scholar 

  • Wilkins M et al (1964) Fundamental methods in hydrodynamics. Methods Comput Phys 3(1):211–263

    Google Scholar 

  • Yin S, Dusseault MB, Rothenburg L (2011) Coupled thmc modeling of co2 injection by finite element methods. J Petrol Sci Eng 80(1):53–60

    Article  Google Scholar 

  • Yoshida N, Levine JS, Stauffer PH (2016) Investigation of uncertainty in co2 reservoir models: a sensitivity analysis of relative permeability parameter values. Int J Greenhouse Gas Control 49:161–178

    Article  Google Scholar 

  • Zhang CL, Rothfuchs T, Su K, Hoteit N (2007) Experimental study of the thermo-hydro-mechanical behaviour of indurated clays. Phys Chem Earth Parts A/B/C 32(8–14):957–965

    Article  Google Scholar 

  • Zhou Q, Birkholzer J, Rutqvist J, Tsang CF (2008) Sensitivity study of co2 storage capacity in brine aquifers with closed boundaries: dependence on hydrogeologic properties

  • Zienkiewicz OC, Chan A, Pastor M, Schrefler B, Shiomi T (1999) Computational geomechanics. Citeseer

Download references

Acknowledgements

This research was supported by Basic Research Program at Korea Institute of Geoscience and Mineral Resources (KIGAM, 20-3414, 20-3413-1) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017M2A8A5014857 and No. 2020M2C9A1062949). We thank CO2CRC for collaboration. The additional support concerning numerical methods development and implementation into the OpenGeoSys platform through the GeomInt project funded by the Federal Ministry for Education and Research (BMBF) under grant 03G0866A is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Hee Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Park, CH., Watanabe, N. et al. Numerical modeling of two-phase flow in deformable porous media: application to CO\(_2\) injection analysis in the Otway Basin, Australia. Environ Earth Sci 80, 121 (2021). https://doi.org/10.1007/s12665-021-09411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09411-1

Keywords

Navigation