Log in

Indicative mean transit time estimation from δ18O values as groundwater vulnerability indicator in karst-fissure aquifers

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Ideally, groundwater vulnerability assessment should take into account potential contaminant breakthrough curve, characterized by transit time, relative change of contamination concentration (input/output) and duration of overstepped concentration. Still, a majority of groundwater vulnerability assessment methods that tend to be more physically based count only with the value of mean transit time (MTT), the elapsed time when groundwater can exit the aquifer after its recharge. In this paper, indicative values of MTT derived from single δ18O sampling values were used to estimate intrinsic vulnerability of individual springs occurring on the Muránska planina Plateau (Slovakia). For 295 springs sampled within 10 days, δ18O was found in the range between −10.90 and −7.32 ‰, without signs of altitudinal effect. According to International Atomic Energy Agency (IAEA) Global Network of Isotopes in Precipitation (GNIP) stations, significant contrast in precipitation δ18O values was found several weeks before sampling. Indicative MTT value, e maxMTT (estimated longest possible mean transit time), was calculated from sine wave course of monitored precipitation isotopic composition, δ18O value in the spring groundwater sample and altitudes of sampled point and precipitation station. Estimated e maxMTT values suggest that heavier oxygen isotopes in samples probably reflect quick circulation and a more vulnerable environment as influenced by enriched summer precipitation. Depleted δ18O suggests lower vulnerability represented by higher e maxMTT values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aller L, Bennet T, Lehr JH, Petty RJ (1985) DRASTIC: a standardised system for evaluating groundwater pollution potential using hydrologic settings. US EPA, Robert S. Kerr Environmental Research Laboratory, Ada, OK, EPA/600/2-85/0108, 163 p

  • Brosig K, Geyer T, Subah A, Sauter M (2008) Travel time based approach for the assessment of vulnerability of karst groundwater: the transit time method. Environ Geol 54:905–911

    Article  Google Scholar 

  • Brouyére S, Jeannin PY, Dassargues A, Goldscheider N, Popescu C, Sauter M, Vadillo I, Zwahlen F (2001) Evaluation and validation of vulnerability concepts using a physically based approach. In: Seventh conference on limestone hydrology and fissured media, Besnacon 20–22 Sep 2001, Sciences et techniques de l’environnement. Mémoire hors-série vol 13, pp 67–72

  • Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu IC, Zwahlen F (2002) Main concepts of the European approach for (karst) groundwater vulnerability assessment and map**. Hydrogeol J 10(2):340–345

    Article  Google Scholar 

  • DeWalle DR, Edwards PJ, Swistock BR, Aravena R, Drimmie RJ (1997) Seasonal isotope hydrology of three Appalachian forest catchments. Hydrol Process 11:1895–1906

    Article  Google Scholar 

  • Doerfliger N, Zwahlen F (1997) EPIK: a new method for outlining of protection areas in karstic environment. In: Proceedings of international symposium on karst waters and environmental impacts, 10–20 Sep 1995, Antalya, Turkey, Balkema, Rotterdam, 1997, pp 117–124

  • Doerfliger N, Zwahlen F (1998) Practical guide, groundwater vulnerability map** in karstic regions (EPIK). Swiss Agency for the Environment, Forests and Landscape (SAEFL), Bern

    Google Scholar 

  • Eberts SM, Bohlke JK, Kauffman LJ, Jurgens BC (2012) Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeol J 20:263–282. doi:10.1007/s10040-011-0810-6

    Article  Google Scholar 

  • Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: International conference, Noordwijk Aan Zee, the Netherlands vulnerability of soil and groundwater to pollutants 1987. The Hague, Netherlands Organization for Applied Scientific Research, pp 69–86

  • Foster S, Hirata R, Gomes D, D’Elia M, Paris M (2002) Groundwater quality protection. A guide for water utilities, municipal authorities and environment agencies. GWMATE—groundwater management advisory team, global water partnership, WHO-PAHO-CEPIS, UNESCO-ROSTLAC-PHI, The World Bank, Washington DC

  • Goldscheider N, Klute M, Sturm S, Hötzl H (2000) The PI method—a GIS-based approach to map** groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol Hann 46(3):157–166

    Google Scholar 

  • Holko L, Dóša M, Michalko J, Kostka Z, Šanda M (2012) Isotopes of oxygen-18 and deuterium in precipitation in Slovakia. J Hydrol Hydromech 60(4):265–276. doi:10.2478/v10098-012-0023-2

    Google Scholar 

  • Hölting B, Haertlé T, Hohberger KH, Nachtigall KH, Villinger E, Weinzierl W, Wrobel JP (1995) Konzept zur Ermittlung der Schutzfunktionen der Grundwasserüberdeckung. Geol Jahrb Ser C 63:5–24

    Google Scholar 

  • IAEA/WMO (2014) Global network of isotopes in precipitation. The GNIP database. http://isohis.iaea.org

  • Jeannin PY, Cornaton F, Zwahlen F, Perrochet P (2001) VULK: a tool for intrinsic vulnerability assessment and validation. In: Seventh conference on limestone hydrology and fissured media, Besnacon 20–22 Sep 2001, Sciences et techniques de l’environnement. Mémoire hors-série, vol 13, pp 185–190

  • Kullman E (1990) Krasovo-puklinové vody. Karst-fissure waters. Geologický ústav Dionýza Štúra, Bratislava

    Google Scholar 

  • Malík P, Švasta J (1999) REKS—an alternative method of karst groundwater vulnerability estimation. Hydrogeology and land use management. In: Proceedings of the XXIXth congress of the international association of hydrogeologists, Bratislava 1999, pp 79–85

  • Malík P, Vojtková S (2007) Physically-based intrinsic groundwater resource vulnerability map of the Tisovec karst. In: Witkowski AJ, Kowalczyk A, Vrba J (eds) Groundwater vulnerability assessment and map**, IAH selected papers on Hydrogeology, vol 11, pp 223–234

  • Malík P, Michalko J, Mansell SJ, Fendeková M (1996) Stable isotopes in karstic groundwaters of Veľká Fatra mountains Slovakia. In: Proceedings of international symposium on isotopes in water resources management, IAEA, Vienna, pp 191–192

  • Malík P, Fendek M, Vrana K, Witkowski A (1998) Groundwater vulnerability map of the Muránska Planina Plateau. In: Gambling with groundwater—physical, chemical, and biological aspects of aquifer—stream relations, proceedings of the XXVIII congress of the international association of hydrogeologists, Las Vegas, Oct 1998, pp 623–628

  • Malík P, Švasta J, Baroková D (2008) Pokus o rekonštrukciu a rozšírenie hydrologickej bilancie Muránskej planiny na obdobie rokov 1971–1985 [attempt of reconstruction and extension of the Muránska planina plateau water balance for the period of 1971–1985, in Slovak with English summary]. SAH Bratislava ISSN 1335-1052, Podzemná voda, vol XIV/1, pp 71–87

  • Malík P, Slaninka I, Švasta J, Michalko J (2014) Oxygen isotope composition snapshot of spring waters in a karstified plateau. In: Andreo B, Carrasco F, Durán J, Jiménez P, LaMoreaux JW (eds.) Hydrogeological and environmental investigations in karst systems, environmental earth sciences book section. Springer, Berlin. doi:10.1007/978-3-642-17435-3_26, ISBN 978-3-642-17434-6, pp 237–244

  • Maloszewski P, Rauert W, Stichler W, Herrmann A (1983) Application of flow models in alpine catchment area using tritium and deuterium data. J Hydrol 66:319–330

    Article  Google Scholar 

  • Maloszewski P, Rauert W, Trimborn P, Herrmann A, Rau R (1992) Isotope hydrological study of mean transit times in an Alpine basin (Wimbachtal Germany). J Hydrol 140(1–4):343–360

    Article  Google Scholar 

  • Margat J (1968) Vulnérabilité des nappes d’eau souterraine à la pollution. BRGM-Publication, Orléans

    Google Scholar 

  • McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modelling. J Hydrol 330(2006):543–563

    Article  Google Scholar 

  • Moore JS (1989) SEEPAGE: a system for early evaluation of the pollution potential of agricultural ground water environments. US Department of Agriculture, Soil Conservation Service, Geology Technical Note 5 (revision 1), 23 p

  • Neukum Ch, Hötzl H (2007) Standardization of vulnerability maps. Environ Geol 51:689–694

    Article  Google Scholar 

  • Popescu IC, Gardin N, Brouyère S, Dassargues A (2008) Groundwater vulnerability assessment using physically based modelling: from challenges to pragmatic solutions. In: Refsgaard JC, Kovar K, Haarder E, Nygaard E (eds) ModelCARE 2007 proceedings, calibration and reliability in groundwater modelling, vol 320. IAHS Publication, Denmark, pp 83–88

    Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Climate change in continental isotopic records. In: Swart PK, Lohmann KL, McKenzie J, Savin S (eds) Geophysical monograph, vol 78. American Geophysical Union, Washington, pp 1–37

    Google Scholar 

  • Švasta J, Slaninka I, Malík P, Vojtková S, Vojtko R (2004) Základná hydrogeologická mapa Muránskej planiny v mierke 1:50 000 [basic hydrogeological map of the Muránska planina in the 1:50,000 scale, in Slovak., Final report, manuscript, archive of the Geofond ŠGÚDŠ Bratislava, No. 92456

  • Van Stempvoort D, Evert L, Wassenaar L (1993) Aquifer Vulnerability Index: a GIS compatible method for groundwater vulnerability map**. Can Water Resour J 18:25–37

    Article  Google Scholar 

  • Vitvar T, Balderer W (1997) Estimation of mean water residence times and runoff generation by 18O measurements in a pre-Alpine catchment (Rietholzbach eastern Switzerland). Appl Geochem 12(6):787–796

    Article  Google Scholar 

  • Vrba J, Zaporozec A [eds] (1994) Guidebook on map** groundwater vulnerability. International contributions to hydrogeology (IAH), Verlag Heinz Heise, Hannover, vol 16, 131 p

  • Witczak S, Duda R, Zurek A (2007) The Polish concept of groundwater vulnerability map**. In: Groundwater Vulnerability Assessment and Map**. Taylor & Francis Group, IAH-selected papers, vol 11, pp 45–59

  • Witkowski AJ, Malík P, Fendek M, Vrana K (1997) Koncepcja mapy podatności wód podziemnych na zanieczyszczenie dla obszarów krasowych na przykladzie plaskowyzu Muranskej Planiny (Slowacja)—conception of groundwater vulnerability map for karstic areas—example of map of Muranska planina Plateau (Slovakia). In: “Wspólczesne Problemy Hydrogeologii”, Górski J, Liszkowska E (red.). WIND. J. Wojewoda, Wroclaw, Tom VIII, ISBN 83-908127-0-3:491-494

  • Witkowski AJ, Rubin K, Kowalczyk A, Różkowski A, Wróbel J (2003) Groundwater vulnerability map of the Chrzanów karst-fissured Triassic aquifer (Poland). Environ Geol 44:59–67

    Google Scholar 

  • Witkowski AJ, Kowalczyk A, Vrba J (eds) (2007) Groundwater vulnerability assessment and map**, IAH selected papers, vol 11. Taylor & Francis, London

    Google Scholar 

  • Zwahlen F (ed) (2004) Vulnerability and risk map** for the protection of carbonate (karst) aquifers. COST Action 620 final report. Office for official publications of the European communities, Luxembourg, 2004, vol XVIII, 297 p, ISBN 92-894-6416-X; European Commission Directorate-General for Research, EUR 20912, 297 p

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic for the EU structural funds (ASFEU) through the project “Výskum dopadu klimatickej zmeny na dostupné množstvá podzemných vôd v SR a vytvorenie expertného GIS [Research on the climate change impact on the available groundwater amounts in Slovak Republic and the creation of expert GIS]” (ITMS code: 26220220002, Operational Programme Research and Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Malík.

Additional information

This article is a part of a Topical Collection in Environmental Earth Sciences on “Groundwater Vulnerability”, edited by Dr. Andrzej Witkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malík, P., Švasta, J., Michalko, J. et al. Indicative mean transit time estimation from δ18O values as groundwater vulnerability indicator in karst-fissure aquifers. Environ Earth Sci 75, 988 (2016). https://doi.org/10.1007/s12665-016-5791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5791-2

Keywords

Navigation