Log in

Application of Artificial Neural Networks for Recovery of Cu from Electronic Waste by Dynamic Acid Leaching: A Sustainable Approach

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Nowadays, the recycling of metals from electrical and electronic waste is of great relevance due to its direct and indirect impact on environmental, social, and economic fields. Therefore, this study, conducted at the laboratory level, focuses on the recovery of copper from printed circuit boards through dynamic acid leaching in an H2SO4-O2 system, with the stirring rate controlled as the main parameter. Initially, the metallic pins were characterized by SEM-EDS, revealing that they consist of 7.56 wt% of copper, the predominant element serving as the base material. A thin gold film (79 wt%) is deposited on the copper to enhance its electrical conduction properties. In the subsequent leaching step, a random sample of 10 g was taken in a 500 mL volume, with an acid concentration of 0.03 M. The system was heated to 298.15 K under an oxygen partial pressure of 101.3 kPa. The stirring rate was varied from 450 to 1000 rpm, resulting in a maximum copper concentration of 645.294 ppm in the solution. The experimental constants were calculated for low (0–60 min) and high (60–240 min) chemical attack times, yielding ranges of 0.026 to 0.923 and 0.019 to 2.577 min− 1, respectively. On the other hand, one of the main outcomes of this research lies in the implementation of an artificial neural network to intelligently model the experimental process. It exhibited a mean squared error, correlation coefficient, and determination coefficient of 0.99690. Artificial neural networks emerge as an exceptional tool in predicting hydrometallurgical processes. This innovative application not only optimizes copper recovery but also ensures a cost-effective and environmentally friendly management of electronic waste. In the same way, it is possible to generate models of problems through learning. For all the aforementioned reasons, in the present work, an artificial neural network is developed to predict the dissolution of Cu in an electronic waste leaching process, considering the stirring rate as a key factor.

Highlights

  • Electronic waste as secondary source of precious and non-precious metals.

  • Copper is obtained from recycled computer printed circuit boards through an environmentally friendly chemical process.

  • Artificial neural networks enable design and fault finding in complex systems by validating, aggregating and analyzing data.

  • Application of an artificial neural network for processing, identification and modeling of dynamic acid leaching systems.

  • A novel combined hydrometallurgical and artificial neural network process for the recovery of copper from electronic waste.

AbstractSection Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Reuter, M.A.: Limits of design for recycling and sustainability: A review, (2011). https://springer.longhoe.net/article/10.1007/s12649-010-9061-3

  2. Cucchiella, F., D’Adamo, I., Gastaldi, M.: Sustainable management of waste-to-energy facilities. Renew. Sustain. Energy Rev. 33, 719–728 (2014). https://doi.org/10.1016/J.RSER.2014.02.015

    Article  Google Scholar 

  3. Wan, X., Taskinen, P., Shi, J., Klemettinen, L., Jokilaakso, A.: Reaction mechanisms of waste printed circuit board recycling in copper smelting: The impurity elements. Min. Eng. 160, 106709 (2021). https://doi.org/10.1016/J.MINENG.2020.106709

    Article  Google Scholar 

  4. Forti, V., Baldé, C.P., Kuehr, R., Bel, G.: The global e-waste monitor 2020: quantities, flows, and the circular economy potential. (2020)

  5. Tuncuk, A., Stazi, V., Akcil, A., Yazici, E.Y., Deveci, H.: Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Min. Eng. 25, 28–37 (2012). https://doi.org/10.1016/J.MINENG.2011.09.019

    Article  Google Scholar 

  6. Sum, E.Y.L.: The recovery of metals from electronic scrap. JOM 1991 434. 43, 53–61 (1991). https://doi.org/10.1007/BF03220549

  7. Attah-Kyei, D., Akdogan, G., Dorfling, C., Zietsman, J., Lindberg, D., Tesfaye, F., Reynolds, Q.: Investigation of waste PCB leach residue as a reducing agent in smelting processes. Min. Eng. 156, 106489 (2020). https://doi.org/10.1016/J.MINENG.2020.106489

    Article  Google Scholar 

  8. Zhang, S., Forssberg, E.: Intelligent Liberation and classification of electronic scrap. Powder Technol. 105, 295–301 (1999). https://doi.org/10.1016/S0032-5910(99)00151-5

    Article  Google Scholar 

  9. Tanskanen, P.: Management and recycling of electronic waste. Acta Mater. 61, 1001–1011 (2013). https://doi.org/10.1016/J.ACTAMAT.2012.11.005

    Article  Google Scholar 

  10. Islam, A., Roy, S., Teo, S.H., Khandaker, S., Taufiq-Yap, Y.H., Aziz, A.A., Monir, M.U., Rashid, U., Vo, D.-V.N., Ibrahim, M.L., Znad, H., Awual, M.R.: Functional novel ligand based palladium(II) separation and recovery from e-waste using solvent-ligand approach. Colloids Surf. Physicochem Eng. Asp. 632, 127767 (2022). https://doi.org/10.1016/j.colsurfa.2021.127767

    Article  Google Scholar 

  11. Islam, A., Swaraz, A.M., Teo, S.H., Taufiq-Yap, Y.H., Vo, D.-V.N., Ibrahim, M.L., Abdulkreem-Alsultan, G., Rashid, U., Awual, M.R.: Advances in physiochemical and biotechnological approaches for sustainable metal recovery from e-waste: A critical review. J. Clean. Prod. 323, 129015 (2021). https://doi.org/10.1016/j.jclepro.2021.129015

    Article  Google Scholar 

  12. Nithya, R., Sivasankari, C., Thirunavukkarasu, A.: Electronic waste generation, regulation and metal recovery: A review. Environ. Chem. Lett. 19, 1347–1368 (2021)

    Article  Google Scholar 

  13. Sengupta, D., Ilankoon, I.M.S.K., Dean Kang, K., Nan Chong, M.: Circular economy and household e-waste management in India: Integration of formal and informal sectors. Min. Eng. 184, 107661 (2022). https://doi.org/10.1016/J.MINENG.2022.107661

    Article  Google Scholar 

  14. Hoffmann, J.E.: Recovering precious metals from electronic scrap. JOM 1992 447. 44, 43–48 (1992). https://doi.org/10.1007/BF03222275

  15. Priya, A., Hait, S.: Feasibility of bioleaching of selected metals from Electronic Waste by Acidiphilium acidophilum. Waste Biomass Valorization 2017 95. 9, 871–877 (2017). https://doi.org/10.1007/S12649-017-9833-0

  16. Wang, Z., Zhang, B., Guan, D.: Take responsibility for electronic-waste disposal. Nat. 2016 5367614. 536, 23–25 (2016). https://doi.org/10.1038/536023a

    Article  Google Scholar 

  17. Yildirir, E., Onwudili, J.A., Williams, P.T.: Chemical Recycling of Printed Circuit Board Waste by depolymerization in sub- and supercritical solvents. Waste Biomass Valorization 2015 66. 6, 959–965 (2015). https://doi.org/10.1007/S12649-015-9426-8

    Article  Google Scholar 

  18. Sodhi, M.S., Reimer, B.: Models for recycling electronics end-of-life products. OR-Spektrum 2001 231. 23, 97–115 (2001). https://doi.org/10.1007/PL00013347

    Article  Google Scholar 

  19. Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M., Böni, H.: Global perspectives on e-waste. Environ. Impact Assess. Rev. 25, 436–458 (2005). https://doi.org/10.1016/J.EIAR.2005.04.001

    Article  Google Scholar 

  20. Cui, J., Zhang, L.: Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 158, 228–256 (2008). https://doi.org/10.1016/J.JHAZMAT.2008.02.001

    Article  Google Scholar 

  21. Lin, C., Chi, Y., **, Y.: Experimental study on Treating Waste Printed Circuit Boards by molten salt oxidation. Waste Biomass Valorization. 2017 87, 8, 2523–2533 (2017). https://doi.org/10.1007/S12649-017-9836-X

    Article  Google Scholar 

  22. Afroz, R., Masud, M.M., Akhtar, R., Duasa, J.B.: Survey and analysis of public knowledge, awareness and willingness to pay in Kuala Lumpur, Malaysia – a case study on household WEEE management. J. Clean. Prod. 52, 185–193 (2013). https://doi.org/10.1016/J.JCLEPRO.2013.02.004

    Article  Google Scholar 

  23. UNITAR | Instituto de las: Naciones Unidas para Formación Profesional e Investigaciones, https://2020results.unitar.org/

  24. Nnorom, I.C., Osibanjo, O.: Overview of electronic waste (e-waste) management practices and legislations, and their poor applications in the develo** countries. Resour. Conserv. Recycl. 52, 843–858 (2008). https://doi.org/10.1016/J.RESCONREC.2008.01.004

    Article  Google Scholar 

  25. Kim, B.S., Lee, J., Seo, S.P., Park, Y.K., Sohn, H.Y.: A process for extracting precious metals from spent printed circuit boards and automobile catalysts. JOM 2004 5612. 56, 55–58 (2004). https://doi.org/10.1007/S11837-004-0237-9

  26. Shuey, S.A., Vildal, E.E., Taylor, P.R.: Pyrometallurgical processing of electronic waste. ME Annu. Meet 06–037 (2006)

  27. Veasey T.J.: An overview of metals recycling by physical separation methods. Proc. Inst. Mech. Eng. Part. E J. Process. Mech. Eng. 211, 61–64 (1997). https://doi.org/10.1243/0954408971529557

    Article  Google Scholar 

  28. Debnath, B., Chowdhury, R., Ghosh, S.K.: Sustainability of metal recovery from E-waste. Front. Environ. Sci. Eng. 2018 126. 121–12 (2018). https://doi.org/10.1007/S11783-018-1044-9

  29. Zherlitsyn, A.A., Alexeenko, V.M., Kumpyak, E.V., Kondratiev, S.S.: Fragmentation of printed circuit boards by sub-microsecond and microsecond high-voltage pulses. Min. Eng. 176, 107340 (2022). https://doi.org/10.1016/J.MINENG.2021.107340

    Article  Google Scholar 

  30. Habashi, F.: Principles of extractive metallurgy. Routledge (2017)

  31. Conard, B.R.: The role of hydrometallurgy in achieving sustainable development. Hydrometallurgy. 30, 1–28 (1992)

    Article  Google Scholar 

  32. Khaliq, A., Rhamdhani, M.A., Brooks, G., Masood, S.: Metal Extraction Processes for Electronic Waste and Existing Industrial Routes: A Review and Australian Perspective. Resour. Vol. 3, Pages 152–179. 3, 152–179 (2014). (2014). https://doi.org/10.3390/RESOURCES3010152

  33. Williams, P.T.: Valorization of Printed Circuit Boards from Waste Electrical and Electronic Equipment by Pyrolysis. Waste Biomass Valorization 2010 11. 1, 107–120 (2010). https://doi.org/10.1007/S12649-009-9003-0

  34. Salinas-Rodríguez, E., Hernández-Ávila, J., Reyes-Valderrama, M.I., Rodríguez-Lugo, V., Montiel-Hernández, J.F., Cerecedo-Sáenz, E.: Recovery of gold and base metals from waste printed circuits boards. Pädi Boletín Científico Ciencias Básicas E Ing. Del. ICBI. 9, 62–71 (2021). https://doi.org/10.29057/ICBI.V9IESPECIAL2.7681

    Article  Google Scholar 

  35. Bidini, G., Fantozzi, F., Bartocci, P., D’Alessandro, B., D’Amico, M., Laranci, P., Scozza, E., Zagaroli, M.: Recovery of precious metals from scrap printed circuit boards through pyrolysis. J. Anal. Appl. Pyrol. 111, 140–147 (2015). https://doi.org/10.1016/J.JAAP.2014.11.020

    Article  Google Scholar 

  36. Puente-Siller, D.M., Fuentes-Aceituno, J.C., Nava-Alonso, F.: An analysis of the efficiency and sustainability of the thiosulfate-copper-ammonia-monoethanolamine system for the recovery of silver as an alternative to cyanidation. Hydrometallurgy. 169, 16–25 (2017). https://doi.org/10.1016/J.HYDROMET.2016.12.003

    Article  Google Scholar 

  37. Sharma, N., Chauhan, G., Kumar, A., Sharma, S.K.: Statistical Optimization of Heavy Metal (Cu2 + and Co2+) extraction from Printed Circuit Boards and Mobile batteries using Chelation Technology. Ind. Eng. Chem. Res. 56, 6805–6819 (2017). https://doi.org/10.1021/ACS.IECR.7B01481/SUPPL_FILE/IE7B01481_SI_001.PDF

    Article  Google Scholar 

  38. Liu, K., Zhang, Z., Zhang, F.S.: Direct extraction of palladium and silver from waste printed circuit boards powder by supercritical fluids oxidation-extraction process. J. Hazard. Mater. 318, 216–223 (2016). https://doi.org/10.1016/J.JHAZMAT.2016.07.005

    Article  Google Scholar 

  39. Yang, C., Li, J., Tan, Q., Liu, L., Dong, Q.: Green Process of Metal Recycling: Coprocessing Waste Printed Circuit Boards and spent tin strip** solution. ACS Sustain. Chem. Eng. 5, 3524–3534 (2017). https://doi.org/10.1021/ACSSUSCHEMENG.7B00245/SUPPL_FILE/SC7B00245_SI_001.PDF

    Article  Google Scholar 

  40. Li, H., Eksteen, J., Oraby, E.: Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives – A review. Resour. Conserv. Recycl. 139, 122–139 (2018). https://doi.org/10.1016/J.RESCONREC.2018.08.007

    Article  Google Scholar 

  41. Gunarathne, V., Rajapaksha, A.U., Vithanage, M., Alessi, D.S., Selvasembian, R., Naushad, M., You, S., Oleszczuk, P., Ok, Y.S.: Hydrometallurgical processes for heavy metals recovery from industrial sludges. Crit. Rev. Environ. Sci. Technol. 52, 1022–1062 (2022). https://doi.org/10.1080/10643389.2020.1847949

    Article  Google Scholar 

  42. Iqbal, A., Jan, M.R., Shah, J., Rashid, B.: Dispersive solid phase extraction of precious metal ions from electronic wastes using magnetic multiwalled carbon nanotubes composite. Min. Eng. 154, 106414 (2020). https://doi.org/10.1016/J.MINENG.2020.106414

    Article  Google Scholar 

  43. Reyes-Valderrama, M.I., Salinas-Rodríguez, E., Montiel-Hernández, J.F., Rivera-Landero, I., Cerecedo-Sáenz, E., Hernández-Ávila, J., Arenas-Flores, A.: Urban Mining and Electrochemistry: Cyclic Voltammetry Study of Acidic Solutions from Electronic Wastes (Printed Circuit Boards) for Recovery of Cu, Zn, and Ni. Met. Vol. 7, Page 55. 7, 55 (2017). (2017). https://doi.org/10.3390/MET7020055

  44. Nadirov, R., Syzdykova, L., Zhussupova, A.: Copper smelter slag treatment by ammonia solution: Leaching process optimization. J. Cent. South. Univ. 24, 2799–2804 (2017). https://doi.org/10.1007/s11771-017-3694-3

    Article  Google Scholar 

  45. Wu, P., Zhang, L., Liu, Y., **e, X., Zhou, J., Jia, H., Wei, P.: Enhancing Cu-Zn-Cr-Ni Co-Extraction from Electroplating Sludge in Acid Leaching Process by Optimizing Fe3 + Addition and Redox Potential. https://home.liebertpub.com/ees. 36, 1244–1257 (2019). https://doi.org/10.1089/EES.2019.0127

  46. Barragan, J.A., Castro, J.R.A., Peregrina-Lucano, A.A., Sánchez-Amaya, M., Rivero, E.P., Larios-Durán, E.R.: Leaching of metals from e-waste: From its thermodynamic analysis and design to its implementation and optimization. ACS Omega. 6, 12063–12071 (2021). https://doi.org/10.1021/ACSOMEGA.1C00724/ASSET/IMAGES/LARGE/AO1C00724_0007.JPEG.

    Article  Google Scholar 

  47. Panda, R., Jha, M.K., Pathak, D.D., Gupta, R.: Recovery of Ag, Cu, Ni and Fe from the nitrate leach liquor of waste ICs. Min. Eng. 158, 106584 (2020). https://doi.org/10.1016/J.MINENG.2020.106584

    Article  Google Scholar 

  48. Daware, S., Chandel, S., Rai, B.: A machine learning framework for urban mining: A case study on recovery of copper from printed circuit boards. Min. Eng. 180, 107479 (2022). https://doi.org/10.1016/J.MINENG.2022.107479

    Article  Google Scholar 

  49. Oraby, E.A., Eksteen, J.J.: The selective leaching of copper from a gold–copper concentrate in glycine solutions. Hydrometallurgy. 150, 14–19 (2014). https://doi.org/10.1016/J.HYDROMET.2014.09.005

    Article  Google Scholar 

  50. Tanda, B.C., Eksteen, J.J., Oraby, E.A.: An investigation into the leaching behaviour of copper oxide minerals in aqueous alkaline glycine solutions. Hydrometallurgy. 167, 153–162 (2017). https://doi.org/10.1016/J.HYDROMET.2016.11.011

    Article  Google Scholar 

  51. Oraby, E.A., Eksteen, J.J., Tanda, B.C.: Gold and copper leaching from gold-copper ores and concentrates using a synergistic lixiviant mixture of glycine and cyanide. Hydrometallurgy. 169, 339–345 (2017). https://doi.org/10.1016/J.HYDROMET.2017.02.019

    Article  Google Scholar 

  52. Li, H., Oraby, E., Eksteen, J.: Extraction of precious metals from waste printed circuit boards using cyanide-free alkaline glycine solution in the presence of an oxidant. Min. Eng. 181, 107501 (2022). https://doi.org/10.1016/J.MINENG.2022.107501

    Article  Google Scholar 

  53. Oraby, E.A., Li, H., Eksteen, J.J.: An Alkaline Glycine-based Leach process of base and precious metals from Powdered Waste Printed Circuit Boards. Waste Biomass Valorization 2019 118. 11, 3897–3909 (2019). https://doi.org/10.1007/S12649-019-00780-0

  54. Rodrigues, É.F., De Rossi, A., Rovaris, B., Valério, A., de Oliveira, D., Hotza, D.: Cleaner Pre-concentration of metals from Printed Circuit Board Waste Using Novel Dense Liquid Medium Based on Sodium Silicate. Waste Biomass Valorization 2020 127. 12, 4081–4087 (2020). https://doi.org/10.1007/S12649-020-01271-3

  55. Soto, C.E.B., Hernández, J.F.M., Muñoz, E.J., Renteria, M.Á.F., Flores, D.A.A.: Efecto De La concentración De H3O + en recuperación de Los metales au, Cu, Ni Y Zn contenidos en la chatarra electrónica. Ingenio Y Concienc. Boletín Científico La Esc. Super Ciudad Sahagún. 8, 8–11 (2021). https://doi.org/10.29057/ESCS.V8I15.6497

    Article  Google Scholar 

  56. Eksteen, J.J., Oraby, E.A., Tanda, B.C.: A conceptual process for copper extraction from chalcopyrite in alkaline glycinate solutions. Min. Eng. 108, 53–66 (2017). https://doi.org/10.1016/J.MINENG.2017.02.001

    Article  Google Scholar 

  57. Deng, Z., Oraby, E.A., Eksteen, J.J.: The sulfide precipitation behaviour of cu and au from their aqueous alkaline glycinate and cyanide complexes. Sep. Purif. Technol. 218, 181–190 (2019). https://doi.org/10.1016/J.SEPPUR.2019.02.056

    Article  Google Scholar 

  58. Nithya, R., Sivasankari, C., Thirunavukkarasu, A., Selvasembian, R.: Novel adsorbent prepared from bio-hydrometallurgical leachate from waste printed circuit board used for the removal of methylene blue from aqueous solution. Microchem J. 142, 321–328 (2018)

    Article  Google Scholar 

  59. Nithya, R., Thirunavukkarasu, A., Sivasankari, C.: Comparative profile of green and chemically synthesized nanomaterials from bio-hydrometallurgical leachate of e-waste on crystal violet adsorption kinetics, thermodynamics, and mass transfer and statistical models. Biomass Convers. Biorefinery. 13, 17197–17221 (2023)

    Article  Google Scholar 

  60. Ortega, R., Lor, A., Nicklasson, J.: Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications

  61. Chemical Reaction Engineering - Octave Levenspiel: Chemical reaction engineering. John wiley %26 sons.&f = false (1998). https://books.google.com.mx/books?hl=es&lr=&id=vw48EAAAQBAJ&oi=fnd&pg=PP1&dq=55.%09Levenspiel,+O.+(1998).+Chemical+reaction+engineering.+John+wiley+%26+sons.&ots=5x03pv6VaA&sig=79b4avkaVbD6Wc6xVHHiazqJykE&redir_esc=y#v=onepage&q=55.%09Levenspiel%2 CO

  62. Hernandez, E., Arkun, Y.: Neural network modeling and an extended DMC algorithm to control nonlinear systems. Proc. Am. Control Conf. 2454–2459 (1990). https://doi.org/10.23919/ACC.1990.4791169

  63. Nahas, E.P., Henson, M.A., Seborg, D.E.: Nonlinear internal model control strategy for neural network models. Comput. Chem. Eng. 16, 1039–1057 (1992). https://doi.org/10.1016/0098-1354(92)80022-2

    Article  Google Scholar 

  64. Psichogios, D.C., Ungar, L.H.: Direct and Indirect Model Based Control using Artificial neural networks. Ind. Eng. Chem. Res. 30, 2564–2573 (1991). https://doi.org/10.1021/IE00060A009/ASSET/IE00060A009.FP.PNG_V03

    Article  Google Scholar 

  65. Cubillos, F.A., Lima, E.L.: Adaptive hybrid neural models for process control. Comput. Chem. Eng. 22, S989–S992 (1998). https://doi.org/10.1016/S0098-1354(98)00197-5

    Article  Google Scholar 

  66. Honório, K.M., De Lima, E.F., Quiles, M.G., Romero, R.A.F., Molfetta, F.A., Da Silva, A.B.F.: Artificial neural networks and the study of the psychoactivity of cannabinoid compounds. Chem. Biol. Drug Des. 75, 632–640 (2010). https://doi.org/10.1111/J.1747-0285.2010.00966.X

    Article  Google Scholar 

  67. Fu, Y., Aldrich, C.: Flotation froth image recognition with convolutional neural networks. Min. Eng. 132, 183–190 (2019). https://doi.org/10.1016/J.MINENG.2018.12.011

    Article  Google Scholar 

  68. Koh, E.J.Y., Amini, E., McLachlan, G.J., Beaton, N.: Utilising a deep neural network as a surrogate model to approximate phenomenological models of a comminution circuit for faster simulations. Min. Eng. 170, 107026 (2021). https://doi.org/10.1016/J.MINENG.2021.107026

    Article  Google Scholar 

  69. Ruhatiya, C., Shaosen, S., Wang, C.-T., Jishnu, A.K., Bhalerao, Y.: Optimization of process conditions for maximum metal recovery from spent zinc-manganese batteries: Illustration of statistical based automated neural network approach. Energy Storage. 2, e111 (2020). https://doi.org/10.1002/EST2.111

    Article  Google Scholar 

  70. Sadrzadeh, M., Mohammadi, T., Ivakpour, J., Kasiri, N.: Separation of lead ions from wastewater using electrodialysis: Comparing mathematical and neural network modeling. Chem. Eng. J. 144, 431–441 (2008). https://doi.org/10.1016/J.CEJ.2008.02.023

    Article  Google Scholar 

  71. Sobouti, A., Hoseinian, F.S., Rezai, B., Jalili, S.: The lead recovery prediction from lead concentrate by an artificial neural network and particle swarm optimization. (2019) 22, 319–327.https://doi.org/10.1080/12269328.2019.1644205.

  72. Sujatha, S., Rajamohan, N., Anbazhagan, S., Vanithasri, M., Rajasimman, M.: Extraction of nickel using a green emulsion liquid membrane – Process intensification, parameter optimization and artificial neural network modeling. Chem. Eng. Process. - Process Intensif. 165, 108444 (2021). https://doi.org/10.1016/J.CEP.2021.108444

  73. Pazhoohan, J., Beiki, H., Esfandyari, M.: Experimental investigation and adaptive neural fuzzy inference system prediction of copper recovery from flotation tailings by acid leaching in a batch agitated tank. Int. J. Min. Metall. Mater. 2019 265. 26, 538–546 (2019). https://doi.org/10.1007/S12613-019-1762-4

    Article  Google Scholar 

  74. Ebrahimzade, H., Khayati, G.R., Schaffie, M.: Leaching kinetics of valuable metals from waste Li-ion batteries using neural network approach. J. Mater. Cycles Waste Manag. 20, 2117–2129 (2018). 204 https://doi.org/10.1007/S10163-018-0766-X

  75. Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs, NJ (1992)

    Google Scholar 

  76. Sivanandam, S.N., Sumathi, S., Deepa, S.N.: Fuzzy Rule-Based System. Introd. to Fuzzy Log. using MATLAB. 113–149 (2007). https://doi.org/10.1007/978-3-540-35781-0_6

  77. Montiel-Hernández, J.F.: Lixiviación dinámica ácida De Desechos electrónicos en El Sistema H2SO4-O2. Obtención de oro metálico y recuperación electrolítica de Cu. Ni y Zn (2015)

  78. Montiel, J.F., Reyes, M.I., Rivera, I., Patiño, F., Hernández, J.: Caracterización De circuitos impresos vía SEM-EDS Y Su lixiviación en El Sistema O2-H2SO4. Bol. Soc. Quim. Mex. 6, 21–23 (2012)

    Google Scholar 

  79. Kalman, B.L., Kwasny, S.C.: Why Tanh: Choosing a Sigmoidal Function. Proc. Int. Jt. Conf. Neural Networks. 4, 578–581 (1992). https://doi.org/10.1109/IJCNN.1992.227257

  80. Yu, H., Wilamowski, B.M.: Levenberg—Marquardt Training. In: Wilamowski, B. M., & Irwin, J.D. (ed.) The Industrial Electronics Handbook. pp. 12–1 to 12–15. CRC Press, Boca Raton (2011)

  81. Almalki, M.M., Alaidarous, E.S., Maturi, D., Raja, M.A.Z., Shoaib, M.: A Levenberg–Marquardt Backpropagation Neural Network for The Numerical Treatment of Squeezing Flow with Heat Transfer Model. IEEE Access. (2020). https://doi.org/10.1109/ACCESS.2020.3044973

  82. Sapna, S., Tamilarasi, A., Kumar, M.P.: Backpropagation learning algorithm based on Levenberg Marquardt Algorithm. Comp. Sci. Inf. Technol. (CS IT) 2, 393–398. (2012)

  83. Azadeh, A., Sheikhalishahi, M., Tabesh, M., Negahban, A.: The effects of pre-processing methods on forecasting improvement of Artificial neural networks. Aust J. Basic. Appl. Sci. 5, 570–580 (2011)

    Google Scholar 

  84. Ogata, K.: Modern control engineering fifth edition. (2010)

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justo F. Montiel-Hernández.

Ethics declarations

Competing Interests

The authors did not receive support from any organization for the submitted work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordaz-Oliver, M., Jiménez-Muñoz, E., Gutiérrez-Moreno, E. et al. Application of Artificial Neural Networks for Recovery of Cu from Electronic Waste by Dynamic Acid Leaching: A Sustainable Approach. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02644-8

Keywords

Navigation