Log in

Bioactive Potential of Baby Corn Silk: In-Vitro Evaluation of Antioxidant, Antimicrobial, Anti-diabetic, and Anti-gout Activities

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

To analyse phytochemical composition, antioxidant potential, antimicrobial activity and α-amylase, α-glucosidase and xanthine oxidase inhibitory potential of corn silk extracts derived from the Syngenta 5414 corn variety.

Methods

Corn silk sample was lyophilized and extracted using 80% ethanol, methanol, water or acetone. Phytochemicals were qualitatively screened and bioactive compounds were identified through GCMS. Antimicrobial activities were evaluated using the agar well method for bacteria and fungal biomass method for fungi. The extracts were subjected to evaluation for their antidiabetic activity through α-amylase and α-glucosidase inhibitory assays, while their anti-gout potential was assessed through xanthine oxidase inhibitory assay, encompassing all four solvent extracts in the study.

Results

Phytochemical screening revealed the presence of phenols, flavonoids, tannins, alkaloids, sterols, protein xanthoproteic, and cardiac glycosides in the extracts. The Folin-Ciocalteu and AlCl3 assays demonstrated higher yields of phenolics and flavonoids in 80% ethanolic extract. Furthermore, the extracts remarkably scavenged reactive oxygen species like DPPH, ABTS and elicited considerable ferric ion reducing antioxidant power. GC–MS analysis identified 21 compounds in the 80% ethanolic extract, with 1,2,3-Propanetriol-1-acetate, n-Hexadecanoic acid, and 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl- as major components. Antimicrobial assays demonstrated the ethanolic (80%) and methanolic extract's remarkable ability to inhibit the growth of Gram-positive bacteria and exhibit anti-fungal properties. The ethanolic (80%) extract exhibited an IC50 value of 0.70 ± 0.02 and 0.71 ± 0.01 mg against α-amylase and α-glucosidase, respectively, and 33.76 ± 0.43 mg against xanthine oxidase.

Conclusion

Corn silk exhibits potential as a valuable reservoir of natural bioactive compounds endowed with a wide array of health-promoting properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zampini, I.C., Cuello, S., Alberto, M.R., Ordóñez, R.M., D’almeida, R., Solorzano, E., Isla, M.I.: Antimicrobial activity of selected plant species from “the Argentine Puna” against sensitive and multi-resistant bacteria. J. Ethnopharmacol. 124(3), 499–505 (2009). https://doi.org/10.1016/j.jep.2009.05.011

    Article  Google Scholar 

  2. Liu, J., Wang, C., Wang, Z., Zhang, C., Lu, S., Liu, J.: The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chem. 126(1), 261–269 (2011). https://doi.org/10.1016/j.foodchem.2010.11.014

    Article  Google Scholar 

  3. Naeimi, A.F., Alizadeh, M.: Antioxidant properties of the flavonoid fisetin: an updated review of in vivo and in vitro studies. Trends Food Sci. Technol. 70, 34–44 (2017). https://doi.org/10.1016/j.tifs.2017.10.003

    Article  Google Scholar 

  4. Jia, Y., Gao, X., Xue, Z., Wang, Y., Lu, Y., Zhang, M., Panichayupakaranant, P., Chen, H.: Characterization, antioxidant activities, and inhibition on α-glucosidase activity of corn silk polysaccharides obtained by different extraction methods. Int. J. Biol. Macromol. 163, 1640–1648 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.068

    Article  Google Scholar 

  5. Wang, G.Q., Xu, T., Bu, X.M., Liu, B.Y.: Anti-inflammation effects of corn silk in a rat model of carrageenin-induced pleurisy. Inflammation 35, 822–827 (2012). https://doi.org/10.1007/s10753-011-9382-9

    Article  Google Scholar 

  6. Sarfare, S., Khan, S.I., Zulfiqar, F., Radhakrishnan, S., Ali, Z., Khan, I.A.: Undescribed C-glycosylflavones from corn silk and potential anti-inflammatory activity evaluation of isolates. Planta Med. 88(09/10), 745–752 (2022). https://doi.org/10.1055/a-1728-1347

    Article  Google Scholar 

  7. Velazquez, D.V.O., Xavier, H.S., Batista, J.E.M., de Castro-Chaves, C.: Zea mays L. extracts modify glomerular function and potassium urinary excretion in conscious rats. Phytomedicine 12(5), 363–369 (2005). https://doi.org/10.1016/j.phymed.2003.12.010

    Article  Google Scholar 

  8. Chaudhary, R.K., Karoli, S.S., Dwivedi, P.S., Bhandari, R.: Anti-diabetic potential of corn silk (Stigma maydis): an in-silico approach. J. Diabetes Metab. Disord. 21(1), 445–454 (2022). https://doi.org/10.1007/s40200-022-00992-7

    Article  Google Scholar 

  9. Guo, Q., Ma, Q., Xue, Z., Gao, X., Chen, H.: Studies on the binding characteristics of three polysaccharides with different molecular weight and flavonoids from corn silk (Maydis stigma). Carbohydr. Polym. 198, 581–588 (2018). https://doi.org/10.1016/j.carbpol.2018.06.120

    Article  Google Scholar 

  10. Zhao, W., Yin, Y., Yu, Z., Liu, J., Chen, F.: Comparison of anti-diabetic effects of polysaccharides from corn silk on normal and hyperglycemia rats. Int. J. Biol. Macromol. 50(4), 1133–1137 (2012). https://doi.org/10.1016/j.ijbiomac.2012.02.004

    Article  Google Scholar 

  11. Azevedo, A.S.D., Seibert, J.B., Amparo, T.R., Antunes, A.D.S., Sousa, L.R.D., Souza, G.H.B.D., Teixeira, L.F.M., Vieira, P.M.D.A., Santos, V.M.R.D., Nascimento, A.M.D., Nascimento, A.M.D.: Chemical constituents, antioxidant potential, antibacterial study and photoprotective activity of Brazilian corn silk extract. Food Sci. Technol. (2022). https://doi.org/10.1590/fst.98421

    Article  Google Scholar 

  12. Abirami, S., Priyalakshmi, M., Soundariya, A., Samrot, A.V., Saigeetha, S., Emilin, R.R., Dhiva, S., Inbathamizh, L.: Antimicrobial activity, antiproliferative activity, amylase inhibitory activity and phytochemical analysis of ethanol extract of corn (Zea mays L.) silk. Curr. Res. Green Sustain. Chem. 4, 100089 (2021). https://doi.org/10.1016/j.crgsc.2021.100089

    Article  Google Scholar 

  13. Morshed, S., Islam, S.M.: Antimicrobial activity and phytochemical properties of corn (Zea mays L.) silk. SKUAST J. Res. 17(1), 8–14 (2015)

    Google Scholar 

  14. Nessa, F., Ismail, Z., Mohamed, N.: Antimicrobial activities of extracts and flavonoid glycosides of corn silk (Zea mays L.). Int. J. Biotechnol. Wellness Ind. 1, 115–121 (2012). https://doi.org/10.6000/1927-3037/2012.01.02.02

    Article  Google Scholar 

  15. Li, Y., Hu, Z., Wang, X., Wu, M., Zhou, H., Zhang, Y.: Characterization of a polysaccharide with antioxidant and anti-cervical cancer potentials from the corn silk cultivated in Jilin province. Int. J. Biol. Macromol. 155, 1105–1113 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.077

    Article  Google Scholar 

  16. Yang, J., Li, X., Xue, Y., Wang, N., Liu, W.: Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice. Int. J. Biol. Macromol. 64, 276–280 (2014). https://doi.org/10.1016/j.ijbiomac.2013.11.033

    Article  Google Scholar 

  17. Chaiittianan, R., Chayopas, P., Rattanathongkom, A., Tippayawat, P., Sutthanut, K.: Anti-obesity potential of corn silks: relationships of phytochemicals and antioxidation, anti-pre-adipocyte proliferation, anti-adipogenesis, and lipolysis induction. J. Funct. Foods 23, 497–510 (2016). https://doi.org/10.1016/j.jff.2016.03.010

    Article  Google Scholar 

  18. Oh, K.K., Adnan, M., Cho, D.H.: Elucidating drug-like compounds and potential mechanisms of corn silk (Stigma Maydis) against obesity: a network pharmacology study. Curr. Issues Mol. Biol. 43(3), 1906–1936 (2021). https://doi.org/10.3390/cimb43030133

    Article  Google Scholar 

  19. Touati, N., Saidani, K., Boudries, H., Hammiche, H., Ouazene, N., Bedjou, F.: Antibacterial activity of phenolic compounds of Pulicaria odora, wild plant in northern Algeria. Int. Food Res. J. 25(5), 2021–2030 (2018)

    Google Scholar 

  20. Cos, P., Vlietinck, A.J., Berghe, D.V., Maes, L.: Anti-infective potential of natural products: how to develop a stronger in vitro “proof-of-concept.” J. Ethnopharmacol. 106(3), 290–302 (2006). https://doi.org/10.1016/j.jep.2006.04.003

    Article  Google Scholar 

  21. Duraipandiyan, V., Ayyanar, M., Ignacimuthu, S.: Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu. India. BMC Complement. Altern. Med. (2006). https://doi.org/10.1186/1472-6882-6-35

    Article  Google Scholar 

  22. Djeussi, D.E., Noumedem, J.A., Seukep, J.A., Fankam, A.G., Voukeng, I.K., Tankeo, S.B., Nkuete, A.H., Kuete, V.: Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. BMC Complement. Altern. Med. 13, 1–8 (2013). https://doi.org/10.1186/1472-6882-13-164

    Article  Google Scholar 

  23. Horii, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N., Matsui, K.: Synthesis and α-D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potential oral antidiabetic agents. J. Med. Chem. 29(6), 1038–1046 (1986). https://doi.org/10.1021/jm00156a023

    Article  Google Scholar 

  24. Jhang, J.J., Ong, J.W., Lu, C.C., Hsu, C.L., Lin, J.H., Liao, J.W., Yen, G.C.: Hypouricemic effects of Mesona procumbens Hemsl. through modulating xanthine oxidase activity in vitro and in vivo. Food Funct. 7(10), 4239–4246 (2016). https://doi.org/10.1039/C6FO00822D

    Article  Google Scholar 

  25. Albrecht, E., Waldenberger, M., Krumsiek, J., Evans, A.M., Jeratsch, U., Breier, M., Adamski, J., Koenig, W., Zeilinger, S., Fuchs, C., Klopp, N.: Metabolite profiling reveals new insights into the regulation of serum urate in humans. Metabolomics 10, 141–151 (2014). https://doi.org/10.1007/s11306-013-0565-2

    Article  Google Scholar 

  26. Castrejon, I., Toledano, E., Rosario, M.P., Loza, E., Pérez-Ruiz, F., Carmona, L.: Safety of allopurinol compared with other urate-lowering drugs in patients with gout: a systematic review and meta-analysis. Rheumatol. Int. 35, 1127–1137 (2015). https://doi.org/10.1007/s00296-014-3189-6

    Article  Google Scholar 

  27. Aladdin, N.A., Husain, K., Jalil, J., Sabandar, C.W., Jamal, J.A.: Xanthine oxidase inhibitory activity of a new isocoumarin obtained from Marantodes pumilum var. pumila leaves. BMC Complement. Med. Ther. 20(1), 1–12 (2020). https://doi.org/10.1186/s12906-020-03119-8

    Article  Google Scholar 

  28. Zhang, Y., Deng, L., Wu, C., Zheng, L., Zhong, G.: Konjac glucomannan improves hyperuricemia through regulating xanthine oxidase, adenosine deaminase and urate transporters in rats. J. Funct. Foods 48, 566–575 (2018). https://doi.org/10.1016/j.jff.2018.07.062

    Article  Google Scholar 

  29. Prakash, V., Saxena, S., Gupta, S., Saxena, A.K., Yadav, R., Singh, S.K.: Preliminary phytochemical screening and biological activities of Adina cardifolia. J. Microb. Biochem. Technol. 7, 33–38 (2015)

    Google Scholar 

  30. Dahanayake, J.M., Perera, P.K., Galappatty, P., Perera, H.D.S.M., Arawwawala, L.D.A.M.: Comparative phytochemical analysis and antioxidant activities of Tamalakyadi decoction with its modified dosage forms. Evid. Based Complement. Alternat. Med. (2019). https://doi.org/10.1155/2019/6037137

    Article  Google Scholar 

  31. Limmatvapirat, C., Nateesathittarn, C., Dechasathian, K., Moohummad, T., Chinajitphan, P., Limmatvapirat, S.: Phytochemical analysis of baby corn silk extracts. J. Ayurveda Integr. Med. 11(3), 344–351 (2020). https://doi.org/10.1016/j.jaim.2019.10.005

    Article  Google Scholar 

  32. Harika, P., Kannamba, B., Ramana, G.V., Haribabu, B.: Effect of solvent composition on total phenol and flavonoids content of Withania somnifera. J. Chem. Pharm. Sci. 10, 601–603 (2017)

    Google Scholar 

  33. Thaiwong, N.: Drying temperature of corn silk tea: physical properties, total phenolic content, antioxidant activity and flavonoid content. Food Appl. Biosci. J. 8(3), 38–48 (2020)

    Google Scholar 

  34. Sarepoua, E., Tangwongchai, R., Suriharn, B., Lertrat, K.: Relationships between phytochemicals and antioxidant activity in corn silk. Int. Food Res. J. 20(5), 2073 (2013)

    Google Scholar 

  35. Singh, J., Inbaraj, B.S., Kaur, S., Rasane, P., Nanda, V.: Phytochemical analysis and characterization of corn silk (Zea mays, G5417). Agronomy 12(4), 777 (2022). https://doi.org/10.3390/agronomy12040777

    Article  Google Scholar 

  36. Zhang, R., Huang, L., Deng, Y., Chi, J., Zhang, Y., Wei, Z., Zhang, M.: Phenolic content and antioxidant activity of eight representative sweet corn varieties grown in South China. Int. J. Food Prop. 20(12), 3043–3055 (2017). https://doi.org/10.1080/10942912.2016.1270964

    Article  Google Scholar 

  37. Ezhilan, B.P., Neelamegam, R.: GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharmacognosy Res. 4(1), 11–14 (2012)

    Article  Google Scholar 

  38. Nathan, P., Law, E.J., Murphy, D.F.: A laboratory method for selection of topical antimicrobial agents to treat infected burn wounds. Burns 4, 177–187 (1978). https://doi.org/10.1016/S0305-4179(78)80006-0

    Article  Google Scholar 

  39. Phillips, A.J.L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M.J., Groenewald, J.Z., Crous, P.W.: The Botryosphaeriaceae: genera and species known from culture. Stud. Mycol. 76, 51–167 (2013). https://doi.org/10.3114/sim0021

    Article  Google Scholar 

  40. Sabiu, S., O’Neill, F.H., Ashafa, A.O.T.: Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: an in vitro assessment. J. Ethnopharmacol. 183, 1–8 (2016). https://doi.org/10.1016/j.jep.2016.02.024

    Article  Google Scholar 

  41. Alqahtani, A.S., Hidayathulla, S., Rehman, M.T., ElGamal, A.A., Al-Massarani, S., Razmovski-Naumovski, V., Alqahtani, M.S., El Dib, R.A., AlAjmi, M.F.: Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules 10(1), 61 (2019). https://doi.org/10.3390/biom10010061

    Article  Google Scholar 

  42. Umamaheswari, M., Asokkumar, K., Sivashanmugam, A.T., Remyaraju, A., Subhadradevi, V., Ravi, T.K.: In vitro xanthine oxidase inhibitory activity of the fractions of Erythrina stricta Roxb. J. Ethnopharmacol. 124(3), 646–648 (2009). https://doi.org/10.1016/j.jep.2009.05.018

    Article  Google Scholar 

  43. Lin, D., **ao, M., Zhao, J., Li, Z., **ng, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H.: An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21(10), 1374 (2016). https://doi.org/10.3390/molecules21101374

    Article  Google Scholar 

  44. Heinrich, M., Mah, J., Amirkia, V.: Alkaloids used as medicines: structural phytochemistry meets biodiversity—an update and forward look. Molecules 26(7), 1836 (2021). https://doi.org/10.3390/molecules26071836

    Article  Google Scholar 

  45. Ambrosy, A.P., Butler, J., Ahmed, A., Vaduganathan, M., Van Veldhuisen, D.J., Colucci, W.S., Gheorghiade, M.: The use of digoxin in patients with worsening chronic heart failure: reconsidering an old drug to reduce hospital admissions. J. Am. Coll. Cardiol. 63(18), 1823–1832 (2014)

    Article  Google Scholar 

  46. Chavan, J.J., Jagtap, U.B., Gaikwad, N.B., Dixit, G.B., Bapat, V.A.: Total phenolics, flavonoids and antioxidant activity of Saptarangi (Salacia chinensis L.) fruit pulp. J. Plant Biochem. Biotechnol. 22, 409–413 (2013). https://doi.org/10.1007/s13562-012-0169-3

    Article  Google Scholar 

  47. Dailey, A., Vuong, Q.V.: Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food Agric. 1(1), 1115646 (2015). https://doi.org/10.1080/23311932.2015.1115646

    Article  Google Scholar 

  48. Dirar, A.I., Alsaadi, D.H.M., Wada, M., Mohamed, M.A., Watanabe, T., Devkota, H.P.: Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 120, 261–267 (2019). https://doi.org/10.1016/j.sajb.2018.07.003

    Article  Google Scholar 

  49. Do, Q.D., Angkawijaya, A.E., Tran-Nguyen, P.L., Huynh, L.H., Soetaredjo, F.E., Ismadji, S., Ju, Y.H.: Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 22(3), 296–302 (2014). https://doi.org/10.1016/j.jfda.2013.11.001

    Article  Google Scholar 

  50. Nurhanan, A.R., Rosli, W.R.: Evaluation of polyphenol content and antioxidant activities of some selected organic and aqueous extracts of cornsilk (Zea mays hairs). J. Med. Bioeng. (2012). https://doi.org/10.12720/jomb.1.1.48-51

  51. Ngo, T.V., Scarlett, C.J., Bowyer, M.C., Ngo, P.D., Vuong, Q.V.: Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. J. Food Qual. (2017). https://doi.org/10.1155/2017/9305047

    Article  Google Scholar 

  52. Vermerris, W., Nicholson, R.: Families of phenolic compounds and means of classification. Phenolic Compd. Biochem. (2006). https://doi.org/10.1007/978-1-4020-5164-7_1

    Article  Google Scholar 

  53. Liu, J., Wang, C., Wang, Z., Zhang, C., Lu, S., Liu, J.: The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) related flavone glycosides. Food Chem. 126(1), 261–269 (2011). https://doi.org/10.1016/j.foodchem.2010.11.014

    Article  Google Scholar 

  54. Kumar, R.S., Rajkapoor, B., Perumal, P.: Antioxidant activities of Indigofera cassioides Rottl. Ex. DC. using various in vitro assay models. Asian Pac. J. Trop. Biomed. 2(4), 256–261 (2012). https://doi.org/10.1016/S2221-1691(12)60019-7

    Article  Google Scholar 

  55. Foo, L.W., Salleh, E., Mamat, S.N.H.: Extraction and qualitative analysis of Piper betle leaves for antimicrobial activities. Int. J. Eng. Technol. Sci. Res. 2(2), 1–8 (2015)

    Google Scholar 

  56. Van, H.T., Le, N.T., Nguyen, D.L., Tran, G.B., Huynh, N.T.A., Vo, H.S., Chu, V.H., Truong, H.A.V., Nguyen, Q.H.: Chemical profile and antibacterial activity of acetone extract of Homalomena cochinchinensis Engl. (Araceae). Plant Sci. Today 8(1), 58–65 (2021)

    Article  Google Scholar 

  57. Juneious, C.E.: Molecular biological determination of PKC inhibitory effects of 1,2,3-propanetriol monoacetate produced from marine sponge-associated bacteria. In: 3rd International Conference on Clinical Microbiology & Microbial Genomics; 2014 Sep 24–26; Valencia, Spain.

  58. Agoramoorthy, M., Chandrasekaran, V., Venkatesalu, M.J.H.: Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz. J. Microbiol. 38, 739–742 (2007). https://doi.org/10.1590/S1517-83822007000400028

    Article  Google Scholar 

  59. Yu, Y., Correll, P.H., Vanden Heuvel, J.P.: Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma dependent mechanism. Biochim. Biophys. Acta 1581, 89–99 (2002). https://doi.org/10.1016/s1388-1981(02)00126-9

    Article  Google Scholar 

  60. Lawrence, J.L., Eric, G.B., Robert, B.Z.: Treatment of rheumatoid arthritis with gamma linolenic acid. Ann. Intern. Med. 119, 9 (1993). https://doi.org/10.7326/0003-4819-119-9-199311010-00001

    Article  Google Scholar 

  61. Hiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T., Kikugawa, K.: DNA strand-breaking activity and mutagenicity of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), a Maillard reaction product of glucose and glycine. Mutat. Res. 395, 47–56 (1997). https://doi.org/10.1016/S1383-5718(97)00141-1

    Article  Google Scholar 

  62. Kumar, P.P., Kumaravel, S., Lalitha, C.: Screening of antioxidant activity, total phenolics and GC-MS study of Vitex nigundo. Afr. J. Biochem. Res. 4, 191–195 (2010)

    Google Scholar 

  63. Yu, X., Zhao, M., Liu, F., Zeng, S., Hu, J.: Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose-histidine Maillard reaction products. Food Res. Int. 51, 397–403 (2013). https://doi.org/10.1016/j.foodres.2012.12.044

    Article  Google Scholar 

  64. Chen, Z., Liu, Q., Zhao, Z., Bai, B., Sun, Z., Cai, L., Fu, Y., Ma, Y., Wang, Q., **, G.: Effect of hydroxyl on antioxidant properties of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one to scavenge free radicals. RSC Adv. 11(55), 34456–34461 (2021). https://doi.org/10.1039/D1RA06317K

    Article  Google Scholar 

  65. Lalitha, S., Parthipan, B., Mohan, V.R.: Determination of bioactive components of Psychotria nilgiriensis Deb & Gang (Rubiaceae) by GC-MS analysis. Int. J. Pharm. Phytochem. Res. 7, 802–809 (2015)

    Google Scholar 

  66. MacDonald, H.B.: Conjugated linoleic acid and disease prevention: a review of current knowledge. J. Am. Coll. Nutr. 19(sup2), 111S-118S (2000). https://doi.org/10.1080/07315724.2000.10718082

    Article  Google Scholar 

  67. Platt, I., El-Sohemy, A.: Effects of 9cis, 11trans and 10trans, 12cis CLA on osteoclast formation and activity from human CD14+ monocytes. Lipids Health Dis. 8(1), 1–9 (2009). https://doi.org/10.1186/1476-511X-8-15

    Article  Google Scholar 

  68. Tricon, S., Burdge, G.C., Kew, S., Banerjee, T., Russell, J.J., Jones, E.L., Grimble, R.F., Williams, C.M., Yaqoob, P., Calder, P.C.: Opposing effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am. J. Clin. Nutr. 80(3), 614–620 (2004). https://doi.org/10.1093/ajcn/80.3.614

    Article  Google Scholar 

  69. Hsouna, A.B., Trigie, M., Mansour, R.B., Jarraya, R.M., Damak, M., Jaoua, S.: Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia silisqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 148(1), 66–72 (2011). https://doi.org/10.1016/j.ijfoodmicro.2011.04.028

    Article  Google Scholar 

  70. Khan, I.H., Javaid, A.: Anticancer, antimicrobial and antioxidant compounds of quinoa inflorescence. Adv. Life Sci 8(1), 68–72 (2020)

    Google Scholar 

  71. Grosvenor, P.W., Supriono, A., Gray, D.O.: Medicinal plants from Riau province, Sumatra, Indonesia. Part 2: antibacterial and antifungal activity. J. Ethnopharmacol. 45, 97–111 (1995). https://doi.org/10.1016/0378-8741(94)01210-Q

    Article  Google Scholar 

  72. Kaur, P., Singh, J., Kaur, M., Rasane, P., Kaur, S., Kaur, J., Nanda, V., Mehta, C.M., Sowdhanya, D.: Corn silk as an agricultural waste: a comprehensive review on its nutritional composition and bioactive potential. Waste Biomass Valoriz. 14(5), 1413–1432 (2023). https://doi.org/10.1007/s12649-022-02016-0

    Article  Google Scholar 

  73. Wang, Y., Hamburger, M., Gueho, J., Hostettmann, K.: Antimicrobial flavonoids from Psiadia trinervia and their methylated and acetylated derivatives. Phytochemistry 28(9), 2323–2327 (1989). https://doi.org/10.1016/S0031-9422(00)97976-7

    Article  Google Scholar 

  74. Hasanudin, K., Hashim, P., Mustafa, S.: Corn silk (Stigma maydis) in healthcare: a phytochemical and pharmacological review. Molecules 17(8), 9697–9715 (2012). https://doi.org/10.3390/molecules17089697

    Article  Google Scholar 

  75. Hendi, N.K., Naher, H.S., Al-Charrakh, A.H.: In vitro antibacterial and antifungal activity of Iraqi propolis. J. Med. Plants Res. 5(20), 5058–5066 (2011)

    Google Scholar 

  76. Nouri, L., Nafchi, A.M., Karim, A.A.: Phytochemical, antioxidant, antibacterial, and α-amylase inhibitory properties of different extracts from betel leaves. Ind. Crops Prod. 62, 47–52 (2014). https://doi.org/10.1016/j.indcrop.2014.08.015

    Article  Google Scholar 

  77. Tadera, K., Minami, Y., Takamatsu, K., Matsuoka, T.: Inhibition of α-glucosidase and α-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 52(2), 149–153 (2006). https://doi.org/10.3177/jnsv.52.149

    Article  Google Scholar 

  78. Kwon, Y.I., Apostolidis, E., Shetty, K.: In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour. Technol. 99(8), 2981–2988 (2008). https://doi.org/10.1016/j.biortech.2007.06.035

    Article  Google Scholar 

  79. Chika, A., Bello, S.O.: Antihyperglycaemic activity of aqueous leaf extract of Combretum micranthum (Combretaceae) in normal and alloxan-induced diabetic rats. J. Ethnopharmacol. 129(1), 34–37 (2010). https://doi.org/10.1016/j.jep.2010.02.008

    Article  Google Scholar 

  80. Salehi-Sahlabadi, A., Varkaneh, H.K., Shahdadian, F., Ghaedi, E., Nouri, M., Singh, A., Farhadnejad, H., Găman, M.A., Hekmatdoost, A., Mirmiran, P.: Effects of phytosterols supplementation on blood glucose, glycosylated hemoglobin (HbA1c), and insulin levels in humans: a systematic review and meta-analysis of randomized controlled trials. J. Diabetes Metab. Disord. 19, 625–632 (2020). https://doi.org/10.1007/s40200-020-00526-z

    Article  Google Scholar 

  81. Wang, K.J., Zhao, J.L.: Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation, and diabetic nephropathy inhibitory activities. Biomed. Pharmacother. 110, 510–517 (2019). https://doi.org/10.1016/j.biopha.2018.11.126

    Article  Google Scholar 

  82. Khan, S.A., Al Kiyumi, A.R., Al Sheidi, M.S., Al Khusaibi, T.S., Al Shehhi, N.M., Alam, T.: In vitro inhibitory effects on α-glucosidase and α-amylase level and antioxidant potential of seeds of Phoenix dactylifera L. Asian Pac. J. Trop. Biomed. 6(4), 322–329 (2016). https://doi.org/10.1016/j.apjtb.2015.11.008

    Article  Google Scholar 

  83. Singla, R., Singla, N., Jaitak, V.: Stevia rebaudiana targeting α-amylase: an in-vitro and in-silico mechanistic study. Nat. Prod. Res. 33(4), 548–552 (2019). https://doi.org/10.1080/14786419.2017.1395433

    Article  Google Scholar 

  84. Zaidan, U.H., Zen, N.I.M., Amran, N.A., Shamsi, S., Abd Gani, S.S.: Biochemical evaluation of phenolic compounds and steviol glycoside from Stevia rebaudiana extracts associated with in vitro antidiabetic potential. Biocatal. Agric. Biotechnol. 18, 101049 (2019). https://doi.org/10.1016/j.bcab.2019.101049

    Article  Google Scholar 

  85. Ramkumar, K.M., Thayumanavan, B., Palvannan, T., Rajaguru, P.: Inhibitory effect of Gymnema Montanum leaves on α-glucosidase activity and α-amylase activity and their relationship with polyphenolic content. Med. Chem. Res. 19, 948–961 (2010). https://doi.org/10.1007/s00044-009-9241-5

    Article  Google Scholar 

  86. **ao, J., Kai, G., Ni, X., Yang, F., Chen, X.: Interaction of natural polyphenols with α-amylase in vitro: molecular property–affinity relationship aspect. Mol. Biosyst. 7(6), 1883–1890 (2011). https://doi.org/10.1039/C1MB05008G

    Article  Google Scholar 

  87. Adisakwattana, S., Ruengsamran, T., Kampa, P., Sompong, W.: In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complement. Altern. Med. 12(1), 1–8 (2012). https://doi.org/10.1186/1472-6882-12-110

    Article  Google Scholar 

  88. Adefegha, S.A., Oboh, G.: In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe2+-induced lipid peroxidation in rat pancreas. Asian Pac. J. Trop. Biomed. 2(10), 774–781 (2012)

    Article  Google Scholar 

  89. Kazeem, M.I., Adamson, J.O., Ogunwande, I.A.: Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Res. Int. (2013). https://doi.org/10.1155/2013/527570

    Article  Google Scholar 

  90. Toma, A., Makonnen, E., Mekonnen, Y., Debella, A., Addisakwattana, S.: Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcoholic extract of Moringa stenopetala leaves. BMC Complement. Altern. Med. 14, 1–5 (2014). https://doi.org/10.1186/1472-6882-14-180

    Article  Google Scholar 

  91. Krentz, A.J., Bailey, C.J.: Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65, 385–411 (2005). https://doi.org/10.2165/00003495-200565030-00005

    Article  Google Scholar 

  92. Azmi, S.M.N., Jamal, P., Amid, A.: Xanthine oxidase inhibitory activity from potential Malaysian medicinal plant as remedies for gout. Int. Food Res. J. 19(1), 156–165 (2012)

    Google Scholar 

  93. Van Hoorn, D.E., Nijveldt, R.J., Van Leeuwen, P.A., Hofman, Z., M’Rabet, L., De Bont, D.B., Van Norren, K.: Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur. J. Pharmacol. 451(2), 111–118 (2002). https://doi.org/10.1016/S0014-2999(02)02192-1

    Article  Google Scholar 

  94. Nana, F.W., Hilou, A., Millogo, J.F., Nacoulma, O.G.: Phytochemical composition, antioxidant, and xanthine oxidase inhibitory activities of Amaranthus cruentus L. and Amaranthus hybridus L. extracts. Pharmaceuticals 5(6), 613–628 (2012). https://doi.org/10.3390/ph5060613

    Article  Google Scholar 

  95. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9–10), 1231–1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  96. Kostić, D.A., Dimitrijević, D.S., Stojanović, G.S., Palić, I.R., Đorđević, A.S., Ickovski, J.D.: Xanthine oxidase: isolation, assays of activity, and inhibition. J. Chem. (2015). https://doi.org/10.1155/2015/294858

    Article  Google Scholar 

  97. Apaya, K.L., Chichioco-Hernandez, C.L.: Xanthine oxidase inhibition of selected Philippine medicinal plants. J. Med. Plants Res. 5(2), 289–292 (2011)

    Google Scholar 

  98. Wang, X., Yuan, L., Bao, Z., Fu, B., Jiang, P., Ma, T., Lin, S.: Screening of uric acid-lowering active components of corn silk polysaccharide and its targeted improvement on renal excretory dysfunction in hyperuricemia mice. J. Funct. Foods 86, 104698 (2021). https://doi.org/10.1016/j.jff.2021.104698

    Article  Google Scholar 

  99. Oyabambi, A.O., Areola, E.D., Olatunji, L.A., Soladoye, A.O.: Uric acid is a key player in salt-induced endothelial dysfunction: the therapeutic role of Stigma maydis (corn silk) extract. Appl. Physiol. Nutr. Metab. 45(1), 67–71 (2020). https://doi.org/10.1139/apnm-2018-0849

    Article  Google Scholar 

  100. Borges, F., Fernandes, E., Roleira, F.: Progress towards the discovery of xanthine oxidase inhibitors. Curr. Med. Chem. 9(2), 195–217 (2002). https://doi.org/10.2174/0929867023371229

    Article  Google Scholar 

Download references

Funding

H. S. Sahana has received research support by University Grants Commission India (UGCES-22-GE-KAR-F-SJSGC-11828).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Sample collection, analysis and the first manuscript draft were written by Sahana, H. S. and all authors have contributed to review and edit the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sahana Hosanagara Shankaranarayana.

Ethics declarations

Conflict of interest

Vijayalaxmi, K. G., Mohan Chavan, Suvarna, V. Chavannavar and Shobha, D. declare they have no financial interests. H. S. Sahana has received research support by University Grants Commission India (UGCES-22-GE-KAR-F-SJSGC-11828).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankaranarayana, S.H., Gajanana, V.K., Chavan, M. et al. Bioactive Potential of Baby Corn Silk: In-Vitro Evaluation of Antioxidant, Antimicrobial, Anti-diabetic, and Anti-gout Activities. Waste Biomass Valor 15, 4353–4372 (2024). https://doi.org/10.1007/s12649-024-02443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-024-02443-1

Keywords

Navigation