Log in

Efficient Recycling of High-grade Concentrate Powders from Feldspar Slime Using Mechanochemically Assisted Acid Leaching

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Feldspar beneficiation produces large amounts of slime waste, which should be efficiently recycled to achieve the economic and environmental benefits. In this study, mechanochemically assisted acid leaching (MAL) was employed to efficiently recycle high-grade concentrate powders, and the physically beneficiated powder from feldspar slime was initially used as a feedstock to reduce gangue mineral disturbance. Milling time and leaching parameters were investigated to reveal their effects on the mass recovery and whiteness of concentrate powders, and the purification mechanism was clarified by chemical reactions and leaching kinetics. The colored minerals were partially liberated and removed by the mechanochemical treatment and further reduced by acid leaching. The optimal MAL process consists of 2 h milling of the feedstock powder in the 5% HCl solution and acid leaching at 95 °C for 4 h. When the feldspar slime was beneficiated by the combination of magnetic separation and MAL, the mass recovery of the ultrafine (0.72 μm) concentrate powder was 76.7%, with a grade of 0.10% Fe2O3. The whiteness’s of the powder and the burnt sample were 91.2% and 64.3% respectively. This facile processing route enables commercial recovery of high-grade concentrate powders from feldspar slime, thus promoting sustainable exploitation of feldspar resources.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available in the paper. Raw data supporting the findings of this study are available from the corresponding author upon request.

References

  1. Brown, T.J., Idoine, N.E., Wrighton, C.E., Raycraft, S.E.R., Hobbs, F., Shaw, R.A., Everett, P., Deady, E.A., Kresse, C.: World Mineral Production 2015–2019, pp. 23–23. British Geological Survey, Nottingham (2021). https://nora.nerc.ac.uk/id/eprint/529923

    Google Scholar 

  2. Pierro, S.D.: Raw materials for glassmaking: Properties and constraints. In: Richet, P., Conradt, R., Takada, A. (eds.) Encyclopedia of Glass Science, Technology, History, and Culture, pp. 39–51. The American Ceramic Society, Westerville (2021). https://doi.org/10.1002/9781118801017.ch1.2

    Chapter  Google Scholar 

  3. Fuertes, V., Reinosa, J.J., Fernandez, J.F., Enríquez, E.: Engineered feldspar-based ceramics: A review of their potential in ceramic industry. J. Eur. Ceram. Soc. 42, 307–326 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.10.017

    Article  Google Scholar 

  4. Yu, Y.X., Ma, L.Q., Cao, M.L., Liu, Q.: Slime coatings in froth flotation: A review. Min. Eng. 114, 26–36 (2017). https://doi.org/10.1016/j.mineng.2017.09.002

    Article  Google Scholar 

  5. Malayoglu, U., Ozkan, S.G.: Effects of ultrasound on desliming prior to feldspar flotation. Minerals. 9, 784 (2019). https://doi.org/10.3390/min9120784

    Article  Google Scholar 

  6. Wang, C., Sun, C.B., Liu, Q.: Entrainment of gangue minerals in froth flotation: Mechanisms, models, controlling factors, and abatement techniques - a review. Min. Metall. Explor. 38, 673–692 (2021). https://doi.org/10.1007/s42461-020-00295-6

    Article  Google Scholar 

  7. **a, F., Cui, S.C., Pu, X.P.: Performance study of foam ceramics prepared by direct foaming method using red mud and K-feldspar washed waste. Ceram. Int. 48(4), 5197–5203 (2022). https://doi.org/10.1016/j.ceramint.2021.11.059

    Article  Google Scholar 

  8. Bian, Z.F., Miao, X.X., Lei, S.G., Chen, S.E., Wang, W.F., Struthers, S.: The challenges of reusing mining and mineral-processing wastes. Science. 337(6089), 702–703 (2012). https://doi.org/10.1126/science.1224757

    Article  Google Scholar 

  9. Rodrigues, R.T., Rubio, J.: DAF-dissolved air flotation: Potential applications in the mining and mineral processing industry. Int. J. Miner Process. 82(1), 1–13 (2007). https://doi.org/10.1016/j.minpro.2006.07.019

    Article  Google Scholar 

  10. Soonthornwiphat, N., Saisinchai, S., Parinayok, P., Province, T.: Thail. Eng J. 20, 69–78 (2016). https://doi.org/10.4186/ej.2016.20.4.69

    Article  Google Scholar 

  11. Rosa, J.J., Rubio, J.: The FF (flocculation–flotation) process. Min. Eng. 18(7), 701–707 (2005). https://doi.org/10.1016/j.mineng.2004.10.010

    Article  Google Scholar 

  12. Tao, D.: Role of bubble size in flotation of coarse and fine particles - a review. Sep. Sci. Technol. 39, 741–760 (2004). https://doi.org/10.1081/SS-120028444

    Article  Google Scholar 

  13. Karagüzel, C.: Selective separation of fine albite from feldspathic slime containing colored minerals (Fe-Min) by batch scale dissolved air flotation (DAF). Min. Eng. 23, 17–24 (2010). https://doi.org/10.1016/j.mineng.2009.09.002

    Article  Google Scholar 

  14. Karagüzel, C., Çobanoğlu, G.: Stage-wise flotation for the removal of colored minerals from feldspathic slimes using laboratory scale Jameson cell. Sep. Purif. Technol. 74, 100–107 (2010). https://doi.org/10.1016/j.seppur.2010.05.012

    Article  Google Scholar 

  15. Gao, Y., Yue, T., Sun, W., He, D.D., Lu, C.L., Fu, X.Z.: Acid recovering and iron recycling from pickling waste acid by extraction and spray pyrolysis techniques. J. Clean. Prod. 312, 127747 (2021). https://doi.org/10.1016/j.jclepro.2021.127747

    Article  Google Scholar 

  16. Vapur, H., Top, S., Demirci, S.: Purification of feldspar from colored impurities using organic acids. Physicochem Probl. Miner Process. 53(1), 150–160 (2017). https://bibliotekanauki.pl/articles/110202.pdf

    Google Scholar 

  17. Pariyan, K., Hosseini, M.R., Ahmadi, A., Zahiri, A.: Optimization and kinetics of oxalic acid treatment of feldspar for. Removing the iron oxide impurities. Sep. Sci. Technol. 55(10), 1871–1882 (2020). https://doi.org/10.1080/01496395.2019.1612913

    Article  Google Scholar 

  18. Salimkhani, H., Joodi, T., Bordbar-Khiabani, A., Dizaji, A.M., Abdolalipour, B., Azizi, A.: Surface and structure characteristics of commercial K-feldspar powders: Effects of temperature and leaching media. Chin. J. Chem. Eng. 28(1), 307–317 (2020). https://doi.org/10.1016/j.cjche.2018.11.016

    Article  Google Scholar 

  19. Zhan, J.X., Lu, J.S., Wang, D., Liu, Z.Y., Guo, K., **e, B.: Scalable recycling of feldspar slime into high-quality concentrates by removal of colored minerals using the combined beneficiation processes. Sep. Purif. Technol. 309, 123061 (2023). https://doi.org/10.1016/j.seppur.2022.123061

    Article  Google Scholar 

  20. Piva, D.H., Piva, R.H., Venturini, J., Ramon, J., Caldas, V., Morelli, M.R., Bergmann, C.P.: Effect of Fe2O3 content on the electrical resistivity of aluminous porcelain applied to electrical insulators. Ceram. Int. 42(4), 5045–5052 (2016). https://doi.org/10.1016/j.ceramint.2015.12.016

    Article  Google Scholar 

  21. Sasikumar, C., Rao, D.S., Srikanth, S., Mukhopadhyay, N.K., Mehrotra, S.P.: Dissolution studies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4. Hydrometallurgy. 88(1–4), 154–169 (2007). https://doi.org/10.1016/j.hydromet.2007.03.013

    Article  Google Scholar 

  22. Dhawan, N., Agrawal, S.: Recovery of metallic values from feldspar by mechanical and thermal pretreatment followed by acid leaching. Min. Metall. Explor. 39, 1597–1610 (2022). https://doi.org/10.1007/s42461-022-00615-y

    Article  Google Scholar 

  23. Sun, X.T., Li, M.R., **ng, J.T., Li, C.C., Yuan, G.H., Cao, Y.C.: The complex effect of organic acids on the dissolution of feldspar at high temperature. Environ. Earth Sci. 80, 244 (2021). https://doi.org/10.1007/s12665-021-09537-2

    Article  Google Scholar 

  24. Nguyen, T.H., Lee, M.S.: A review on the recovery of titanium dioxide from ilmenite ores by direct leaching technologies. Min. Process Extr Metall Rev. 40(4), 231–247 (2019). https://doi.org/10.1080/08827508.2018.1502668

    Article  Google Scholar 

  25. Cagnon, B., Daval, D., Cabié, M., Lemarchand, D., Gin, S.: A comparative study of the dissolution mechanisms of amorphous and crystalline feldspars at acidic pH conditions. Npj Mater. Degrad. 6, 34 (2022). https://doi.org/10.1038/s41529-022-00240-6

    Article  Google Scholar 

  26. He, H.P., Cao, J.L., Duan, N.: Novel bead-milling mechanically pulverized bulk mineral particles to ultrafine scale: Energy storage and cleaner promotion of mineral extraction. J. Clean. Prod. 198, 46–53 (2018). https://doi.org/10.1016/j.jclepro.2018.07.015

    Article  Google Scholar 

  27. Singh, Y.P., Tanvar, H., Kumar, G., Dhawan, N.: Investigation of planetary ball milling of sericite for potash recovery. Powder Technol. 351, 115–121 (2019). https://doi.org/10.1016/j.powtec.2019.04.013

    Article  Google Scholar 

  28. Li, L., Hu, B.M., Hu, M.: Research on the strengthening mechanism of potassium leaching process to potassium feldspar. Min. Eng. 191, 107941 (2023). https://doi.org/10.1016/j.mineng.2022.107941

    Article  Google Scholar 

  29. Ma, J.Y., Zhang, Y.F., Qin, Y.H., Wu, Z.K., Wang, T.L., Wang, C.W.: The leaching kinetics of K-feldspar in sulfuric acid with the aid of ultrasound. Ultrason. Sonochem. 35, 304–312 (2017). https://doi.org/10.1016/j.ultsonch.2016.10.006

    Article  Google Scholar 

  30. Crundwell, F.K.: The mechanism of dissolution of the feldspars: Part I. dissolution at conditions far from equilibrium. Hydrometallurgy. 151, 151–162 (2015). https://doi.org/10.1016/j.hydromet.2014.10.006

    Article  Google Scholar 

  31. Gout, R., Oelkers, E.H., Schott, J., Wick, A.: The surface chemistry and structure of acid-leached albite: New insights on the dissolution mechanism of the alkali feldspars. Geochim. Cosmochim. Acta. 61(14), 3013–3018 (1997). https://doi.org/10.1016/S0016-7037(97)00122-1

    Article  Google Scholar 

  32. Dove, P.M., Han, N.Z., Wallace, A.F., De Yoreo, J.J.: Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs. PNAS. 105(29), 9903–9908 (2008). https://doi.org/10.1073/pnas.0803798105

    Article  Google Scholar 

  33. Samantray, J., Anand, A., Dash, B., Ghosh, M.K., Behera, A.K.: Silicate minerals-potential source of potash - a review. Min. Eng. 179, 107463 (2022). https://doi.org/10.1016/j.mineng.2022.107463

    Article  Google Scholar 

  34. Chen, X., Qu, X.Y., Qiu, L.W., Song, T.S., Zhang, L.Q.: Hydrothermal experiment research on characteristics and mechanisms of quartz dissolution. Bull. Mineral. Petrol. Geochem. 34(5), 1027–1033 (2015). https://doi.org/10.3969/j.issn.1007-2802.2015.05.019

    Article  Google Scholar 

  35. Hu, Z., Lu, D., Zheng, X., Wang, Y., Xue, Z., Xu, S.: Development of a high-gradient magnetic separator for enhancing selective separation: A review. Powder Technol. 421, 118435 (2023). https://doi.org/10.1016/j.powtec.2023.118435

    Article  Google Scholar 

  36. Cunha, T.N.D., Trindade, D.G., Canesin, M.M., Effting, L., Moura, A.A., Moisés, M.P., Junior, I.L.C., Bail, A.: Reuse of waste pickling acid for the production of hydrochloric acid solution, iron(ii) chloride and magnetic iron oxide: An eco-friendly process. Waste Biomass Valor. 12, 1517–1528 (2021). https://doi.org/10.1007/s12649-020-01079-1

    Article  Google Scholar 

  37. Pan, X.D., Li, S.Q., Li, Y.K., Guo, P.H., Zhao, X., Cai, Y.S.: Resource, characteristic, purification and application of quartz: A review. Min. Eng. 183, 107600 (2022). https://doi.org/10.1016/j.mineng.2022.107600

    Article  Google Scholar 

  38. Chen, Y., Williams, J.S., Campbell, S.J., Wang, G.M.: Increased dissolution of ilmenite induced by high-energy ball milling. Mater. Sci. Eng. A. 271(1–2), 485–490 (1999). https://doi.org/10.1016/S0921-5093(99)00441-4

    Article  Google Scholar 

  39. Faraji, F., Alizadeh, A., Rashchi, F., Mostoufi, N.: Kinetics of leaching: A review. Rev. Chem. Eng. 38(2), 113–148 (2022). https://doi.org/10.1515/revce-2019-0073

    Article  Google Scholar 

  40. Tian, L., Liu, Y., Zhang, T.A., Lv, G.Z., Zhou, S., Zhang, G.Q.: Kinetics of indium dissolution from marmatite with high indium content in pressure acid leaching. Rare Met. 36, 69–76 (2017). https://doi.org/10.1007/s12598-016-0762-z

    Article  Google Scholar 

  41. Zheng, J., Ma, H.W., Chen, H., Ren, Y.F., Rong, B.: Experimental research into iron removal of K-feldspar powder by acid leaching. Earth Sci. J. China Univ. Geosci. 26(6), 657–660 (2001). https://doi.org/10.3321/j.issn:1000-2383.2001.06.017

    Article  Google Scholar 

  42. Hagenson, L.C., Doraiswamy, L.K.: Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system. Chem. Eng. Sci. 53(1), 131–148 (1998). https://doi.org/10.1016/S0009-2509(97)00193-0

    Article  Google Scholar 

  43. Tuncuk, A., Akcil, A.: Iron removal in production of purified quartz by hydrometallurgical process. Int. J. Miner Process. 153, 44–50 (2016). https://doi.org/10.1016/j.minpro.2016.05.021

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51562028, 52060020) and Postgraduate Creative Fund of Nanchang Hangkong University (Grant No. YC2020002). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (51562028, 52060020) and Postgraduate Creative Fund of Nanchang Hangkong University (Grant No. YC2020002).

Author information

Authors and Affiliations

Authors

Contributions

JL: Conceptualization, Methodology, Project administration., Writing-original draft, Writing-review & editing. JZ: Experimental tests and data analysis, Validation. DW: Experimental tests.

Corresponding author

Correspondence to **shan Lu.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Zhan, J. & Wang, D. Efficient Recycling of High-grade Concentrate Powders from Feldspar Slime Using Mechanochemically Assisted Acid Leaching. Waste Biomass Valor 15, 3811–3821 (2024). https://doi.org/10.1007/s12649-024-02426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-024-02426-2

Keywords

Navigation