Log in

Biochar and Trichoderma as an Eco-friendly and Low-Cost Alternative to Improve Soil Chemical and Biological Properties

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate the effects of biochar and Trichoderma spp. on soil chemical and biological properties and to determine whether their combined application could be a sustainable alternative in soil cultivated with tomatoes. We hypothesized that the application of biochar and Trichoderma spp. would alter the soil’s chemical and biological properties.

Methods

To test this hypothesis, we conducted a field experiment and evaluated the soil’s chemical and biological properties.

Results

Our findings revealed that seven soil parameters, namely pH, P, Na+, K+, Ca2+, Mg2+, and total organic C, had a significant influence on the activity of acid phosphatase and urease. We further used machine learning models of soil properties to predict the efficiency of biochar and Trichoderma spp. in improving soil quality. These models demonstrated satisfactory performance in simulating the changes in soil properties induced by biochar, based on both predicted and experimental yield results.

Conclusion

Overall, our study provides important insights into the potential use of biochar and Trichoderma spp. as sustainable alternatives to mineral fertilizer for increasing tomato yield, while also highlighting their effects on soil biological and chemical properties

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Martinez, C.L., Mendoza, et al.: Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass Bioenergy 123, 70–77 (2019). https://doi.org/10.1016/j.biombioe.2019.02.013

    Article  Google Scholar 

  2. Medeiros, E.V., et al.: Biochar and Trichoderma aureoviride applied to the sandy soil: effect on soil quality and watermelon growth. Not. Bot. Horti Agrobot. Cluj-Napoca 48(2), 735–751 (2020). https://doi.org/10.15835/nbha48211851

    Article  Google Scholar 

  3. Dashti, A., et al.: Biochar performance evaluation for heavy metals removal from industrial wastewater based on machine learning: application for environmental protection. Sep. Purif. Technol. 312, 123399 (2023). https://doi.org/10.1016/j.seppur.2023.123399

    Article  Google Scholar 

  4. Li, Y., et al.: Biochar incorporation increases winter wheat (Triticum aestivum L.) production with significantly improving soil enzyme activities at jointing stage. Catena 211, 105979 (2022). https://doi.org/10.1016/j.catena.2021.105979

    Article  Google Scholar 

  5. Lima, J.R.S., "Filho, A.P.M., Clermont-Dauphin, C., Antonino, A.C.D., Hammecker, C., et al.: Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma 319, 14–23 (2018). https://doi.org/10.1016/j.geoderma.2013.06.016

    Article  Google Scholar 

  6. de Medeiros, E., Valente, et al.: Effect of biochar and inoculation with ’Trichoderma aureoviride’ on melon growth and sandy Entisol quality.“ Aust. J. Crop Sci. 146, 971–977 (2020). https://doi.org/10.21475/ajcs.20.14.06.p23

    Article  Google Scholar 

  7. Garbuz, S., et al.: Biochar amendment improves soil physico-chemical properties and alters root biomass and the soil food web in grazed pastures. Agric. Ecosys. Environ. 319, 107517 (2021). https://doi.org/10.1016/J.AGEE.2021.107517

    Article  Google Scholar 

  8. Song, X., et al.: Biochar/vermicompost promotes hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiol. Biochem. 183, 96–110 (2022). https://doi.org/10.1016/j.plaphy.2022.05.008

    Article  Google Scholar 

  9. Parkash, V., Singh, S.: Potential of biochar application to mitigate salinity stress in eggplant. HortScience 55(12), 1946–1955 (2020). https://doi.org/10.21273/HORTSCI15398-20

    Article  Google Scholar 

  10. de Medeiros, E.V., et al.: Biochar as a strategy to manage plant diseases caused by pathogens inhabiting the soil. Crit. Rev. Phytoparasit. 49, 4713–4726 (2021). https://doi.org/10.1007/s12600-021-00887-y

    Article  Google Scholar 

  11. Da Silva, J.S.A., et al.: Biochar and Trichoderma aureoviride URM 5158 as alternatives for the management of cassava root rot. Appl. Soil Ecol. 172, 104353 (2022). https://doi.org/10.1016/j.apsoil.2021.104353

    Article  Google Scholar 

  12. Azadi, N., Raiesi, F.: “Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. “ Biochar 3(4), 485–498 (2021). https://doi.org/10.1007/s42773-021-00123-0

    Article  Google Scholar 

  13. Zhou, J., et al.: “Effects of applying peanut shell and its biochar on the microbial activity and community structure of dryland red soil. “ Heliyon (2022). https://doi.org/10.1016/j.heliyon.2022.e12604

    Article  Google Scholar 

  14. Wang, H., et al.: “The effect of biochar prepared at different pyrolysis temperatures on microbially driven conversion and retention of nitrogen during composting. Heliyon (2023). https://doi.org/10.1016/j.heliyon.2023.e13698

    Article  Google Scholar 

  15. Hermosa, R., Viterbo, A., Chet, I., Monte, E.: Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158(1), 17–25 (2012). https://doi.org/10.1099/mic.0.052274-0

    Article  Google Scholar 

  16. Teixeira da Silva, J.A., et al.: Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 are biocontrol agents that act against cassava root rot through different mechanisms. J. Phytopathol. 164, 11–12 (2016). https://doi.org/10.1111/jph.12521

    Article  Google Scholar 

  17. Nieto-Jacobo, M.F., et al.: Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front. Plant. Sci. (2017). https://doi.org/10.3389/fpls.2017.00102

    Article  Google Scholar 

  18. Hai, A., et al.: Machine learning models for the prediction of total yield and specific surface area of biochar derived from agricultural biomass by pyrolysis. Environ. Technol. Innov. 30, 103071 (2023). https://doi.org/10.1016/j.eti.2023.103071

    Article  Google Scholar 

  19. Silva, F. D., Eira, P. D., Raij, B. V., Silva, C. A., Abreu, C. D., Gianello, C., Barreto, W. D. O. Análises químicas para avaliação da fertilidade do solo. Manual de análises químicas de solos, plantas e fertilizantes 56 (1999)

  20. Bartlett, R.J., Ross, D.S.: Colorimetric determination of oxidizable carbon in acid soil solutions. Soil Sci. Soc. Am. J. 52(4), 1191–1192 (1988). https://doi.org/10.2136/sssaj1988.03615995005200040055x

    Article  Google Scholar 

  21. Anderson, T.-H., Domsch, K.H.: The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem. 253, 393–395 (1993). https://doi.org/10.1016/0038-0717(93)90140-7

    Article  Google Scholar 

  22. Sparling, G.P.: Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Rese. 302, 195–207 (1992). https://doi.org/10.1071/SR9920195

    Article  Google Scholar 

  23. Kandeler, E., Gerber, H.: Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils 6, 68–72 (1988). https://doi.org/10.1007/BF00257924

    Article  Google Scholar 

  24. Tabatabai, M.A., Bremner, J.M.: Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1(4), 301–307 (1969). https://doi.org/10.1016/0038-0717(69)90012-1

    Article  Google Scholar 

  25. Barros, J.A., De Medeiros, E.V., Da Costa, D.P., Duda, G.P., De Sousa Lima, J.R., Dos Santos, U.J., Antonino, A.C.D., Hammecker, C.: Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils. Archi. Agron. Soil Sci. 66(1), 1–10 (2019). https://doi.org/10.1080/03650340.2019.1622095

    Article  Google Scholar 

  26. Costa, D.P., Lino, J.B., Lima, N.T., Franco Junior, C.L., Brito, F.S., Tschoeke, L.F.P., Franca, R.F., Silva, R.O., Medeiros, E.V.: Cassava wastewater as ecofriendly and low-cost alternative to produce lettuce: impacts on soil organic carbon, microbial biomass, and enzymatic activities. Aust. J. Crop Sci. 15(4), 543–552 (2021). https://doi.org/10.21475/ajcs.21.15.04.p2831

    Article  Google Scholar 

  27. Lopes, Ã.M.G., Reis, M.M., Frazão, L.A., da Mata Terra, L.E., Lopes, E.F., dos Santos, M.M., Fernandes, L.A.: Biochar increases enzyme activity and total microbial quality of soil grown with sugarcane. Environ. Tech. Innov. 21, 101270 (2021). https://doi.org/10.1016/j.eti.2020.101270

    Article  Google Scholar 

  28. Mao, Q., Hu, B., Agathokleous, E., Wang, L., Koike, T., Ma, M., Rennenberg, H.: Biochar application improves karstic lime soil physicochemical properties and enzymes activity and enhances sweet tea seedlings physiological performance. Sci. Total Environ. 830, 154815 (2022). https://doi.org/10.1016/j.scitotenv.2022.154815

    Article  Google Scholar 

  29. Lima, J.R.D.S., Goes, M.D.C.C.D., Hammecker, C., Antonino, A.C.D., Medeiros, É.V.D., Sampaio, E.V.D.S.B., Souza, R.: Effects of poultry manure and biochar on acrisol soil properties and yield of common bean. Short-term Field Experiment Agriculture 11(4), 290 (2021). https://doi.org/10.3390/agriculture11040290

    Article  Google Scholar 

  30. Glaser, B., Lehr, V.I.: Biochar effects on phosphorus availability in agricultural soils: a meta-analysis. Sci. Rep. 9(1), 9338 (2019). https://doi.org/10.1038/s41598-019-45693-z

    Article  Google Scholar 

  31. Haider, F.U., Coulter, J.A., Cheema, S.A., Farooq, M., Wu, J., Zhang, R., Shuaijie, G., Liqun, C.: Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecot. Environ. Safety 214, 112112 (2021). https://doi.org/10.1016/j.ecoenv.2021.112112

    Article  Google Scholar 

  32. Montiel-Rozas, M., Hurtado-Navarro, M., Díez-Rojo, M., Pascual, J.A., Ros, M.: Sustainable alternatives to 1, 3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in mediterranean soils: efficacy and effects on soil quality. Environ. Poll. 247, 1046–1054 (2019). https://doi.org/10.1016/j.envpol.2019.01.042

    Article  Google Scholar 

  33. Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., Landivar-Bowles, J.: The potential of remote sensing and artificial intelligence as tools to improve the resilience of agri- culture production systems. Curr. Opin. Biotechnol. 70, 15–22 (2021)

    Article  Google Scholar 

  34. Zhang, Y., **e, Y., Zhang, Y., Qiu, J., Wu, S.: The adoption of deep neural network (DNN) to the prediction of soil liquefaction based on shear wave velocity. Bull. Eng. Geol. Environ. 80, 5053–5060 (2021). https://doi.org/10.1007/s10064-021-02250-1

    Article  Google Scholar 

  35. Shi, L., Li, J., Palansooriya, K.N., Chen, Y., Hou, D., Meers, E., Ok, Y.S.: Modeling phytoremediation of heavy metal contaminated soils through machine learning. J. hazar. Mat. (2023). https://doi.org/10.1016/j.jhazmat.2022.129904

    Article  Google Scholar 

  36. Sun, Y., Zhang, Y., Lu, L., Wu, Y., Zhang, Y., Kamran, M.A., Chen, B.: The application of machine learning methods for prediction of metal immobilization remediation by biochar amendment in soil. Sci. Total Environ. 829, 154668 (2022). https://doi.org/10.1016/j.scitotenv.2022.154668

    Article  Google Scholar 

  37. Maurya, S., Abraham, J.S., Somasundaram, S., et al.: Indicators for assessment of soil quality: a mini-review. Environ. Monit. Assess 192, 604 (2020). https://doi.org/10.1007/s10661-020-08556-z

    Article  Google Scholar 

  38. Diaz-Gonzalez, F.A., Vuelvas, J., Correa, C.A., Vallejo, V.E., Patino, D.: Machine learning and remote sensing techniques applied to estimate soil indicators–review. Ecol. Ind. 135, 108517 (2022). https://doi.org/10.1016/j.ecolind.2021.108517

    Article  Google Scholar 

  39. Mahjenabadi, V.A.J., Mousavi, S.R., Rahmani, A., Karami, A., Rahmani, H.A., Khavazi, K., Rezaei, M.: Digital map** of soil biological properties and wheat yield using remotely sensed, soil chemical data and machine learning approaches. Comput. Electron. Agric. (2022). https://doi.org/10.1016/j.compag.2022.106978

    Article  Google Scholar 

  40. Loureiro, R., Prado, F.F.V., Riggio, G.: OMNICROP—an integrated systems alternative to ideal crop site localization and cultivation chamber self-management utilizing machine learning. J. Crop Improv. 33(1), 110–124 (2019). https://doi.org/10.1080/15427528.2018.1548401

    Article  Google Scholar 

  41. Margalef, O., Sardans, J., Fernández-Martínez, M., et al.: Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337 (2017). https://doi.org/10.1038/s41598-017-01418-8

    Article  Google Scholar 

  42. Wang, H., Zhang, R., Zhao, Y., Shi, H., Liu, G.: Effect of biochar on rhizosphere soil microbial diversity and metabolism in tobacco-growing soil. Ecologies 3, 539–556 (2023). https://doi.org/10.3390/ecologies3040040

    Article  Google Scholar 

  43. Nannipieri, P., Giagnoni, L., Landi, L., Renella, G.: Role of phosphatase enzymes in soil. In: Turner, B.L., Richardson, A.E., Brady, E.M. (eds.) Phosphorus in action: biological processes in soil phosphorus cycling, pp. 215–243. Springer, Netherlands (2011). https://doi.org/10.1007/978-3-642-15271-9_9

    Chapter  Google Scholar 

  44. de Medeiros, E.V., de Oliveira, Silva É, Duda, G.P., Andrade Lira Junior, M., dos Santos, U.J., Hammecker, C., da Costa, D.P., Araujo, F.F., de Araujo Pereira, A.P., Mendes, L.W., Araujo, A.S.: Microbial enzymatic stoichiometry and the acquisition of C, N, and P in soils under different land-use types in Brazilian semiarid. Soil Ecol. Let. 5(3), 1–8 (2023). https://doi.org/10.1007/s42832-022-0159-x

    Article  Google Scholar 

  45. de Medeiros, E.V., Duda, G.P., dos Santos, L.A.R., de Sousa Lima, J.R., de Almeida-Cortêz, J.S., Hammecker, C., Lardy, L., Cournac, L.: Soil organic carbon, microbial biomass and enzyme activities responses to natural regeneration in a tropical dry region in Northeast Brazil. Catena 151, 137–146 (2017). https://doi.org/10.1016/j.catena.2016.12.012

    Article  Google Scholar 

Download references

Acknowledgements

We thank fellowships and grants from CNPq (313421/2021-8, 313174/2018-0; 426497/2018-0; 307335/2017-8; ONDACBC:465764/2014-2 and NEXUS: 441305/2017-2), and FACEPE (APQ-1747-5.01/22; APQ-1464-5.01/22; APQ-0223-5.01/15; APQ-0419-5.01/15; APQ-0431-5.01/17; APQ-0498-3.07/17). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES 88887.736369/2017-00).

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnologico – CNPq (Grant No. 313421/2021-8).

Author information

Authors and Affiliations

Authors

Contributions

EVM, JRSL, and CH conceived this study. AFF, ELDS, and DPC conducted the experiment, collected samples, and proceeded. DPC, APAP, and LWM provided the bioinformatic data DPC performed the statistical, network analyses and generate the results. EVM, ASFA, JRSL, CH, DPC, APAP, and LWM interpreted the results and elaborated the main arguments. All authors wrote and reviewed and the final manuscript.

Corresponding author

Correspondence to Erika Valente de Medeiros.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 347.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Medeiros, E.V., da Costa, D.P., Silva, E.L.D. et al. Biochar and Trichoderma as an Eco-friendly and Low-Cost Alternative to Improve Soil Chemical and Biological Properties. Waste Biomass Valor 15, 1439–1450 (2024). https://doi.org/10.1007/s12649-023-02240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02240-2

Keywords

Navigation