Log in

Process Development and Characteristics of Biocalcium from Skipjack Tuna (Katsuwonus pelamis) Eyeball Scleral Cartilage

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Scleral cartilage biocalcium (SCBC) powder from skipjack tuna (Katsuwonus pelamis) eyeball scleral cartilage (STESC) was produced using hexane and isopropanol (1:1) for defatting, followed by protein removal using alcalase at different concentrations (1.5–4.5%) for various times (0–180 min). Calcined scleral cartilage (CSC) was also prepared and characterized. The lowest fat remaining in STESC was attained after 6 cycles of defatting (P < 0.05). The use of 1.5% alcalase for 90 min resulted in the highest soluble protein removal, while showed the lowest loss in hydroxyproline. Higher value of calcium (39.90%), phosphorus (18.97%) and L* (87.97) were detected in the CSC powder, compared to SCBC powder (23.28%, 10.99% and 81.77, respectively) (P < 0.05). However, a*, b*, and ∆E* of CSC powder were lower than SCBC counterpart. The mean particle sizes of both powders had a negligible difference (P > 0.05). XRD-diffractogram of both powders confirmed the presence of hydroxyapatite. CSC showed the loss of water, amide I, II, III, and other organic functional group peaks in Fourier transform infrared spectra. Also, smaller number and abundance of volatile compounds were found in CSC powder. STESC showed a higher calcium solubility in gastrointestinal tract than CSC (P < 0.05). Therefore, scleral cartilage of tuna eyeball could be used as an alternative source for producing biocalcium.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Cashman, K.: Calcium intake, calcium bioavailability and bone health. Br. J. Nutr. 87, S169–S177 (2002). https://doi.org/10.1079/BJN/2002534

    Article  Google Scholar 

  2. Jung, W.K., Lee, B.J., Kim, S.K.: Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. Br. J. Nutr. 95, 124–128 (2006). https://doi.org/10.1079/BJN20051615

    Article  Google Scholar 

  3. Benjakul, S., Karnjanapratum, S.: Characteristics and nutritional value of whole wheat cracker fortified with tuna bone bio-calcium powder. Food Chem. 259, 181–187 (2018). https://doi.org/10.1016/j.foodchem.2018.03.124

    Article  Google Scholar 

  4. Idowu, A.T., Benjakul, S., Sinthusamran, S., Pongsetkul, J., Sae-Leaw, T., Sookchoo, P.: Whole wheat cracker fortified with biocalcium and protein hydrolysate powders from salmon frame: characteristics and nutritional value. Food Qual. Saf. 3(3), 191–199 (2019). https://doi.org/10.1093/fqsafe/fyz012

    Article  Google Scholar 

  5. Wijayanti, I., Singh, A., Benjakul, S., Sookchoo, P.: Textural, sensory, and chemical characteristic of threadfin bream (Nemipterus sp.) surimi gel fortified with bio-calcium from bone of asian sea bass (Lates calcarifer). Foods 10, 976 (2021). https://doi.org/10.3390/foods10050976

    Article  Google Scholar 

  6. Wijayanti, I., Singh, A., Prodpran, T., Sookchoo, P., Benjakul, S.: Effect of asian sea bass (Lates calcarifer) bio-calcium in combination with different calcium salts on gel properties of threadfin bream surimi. J. Aquat. Food Prod. Technol. 30(9), 1173–1188 (2021). https://doi.org/10.1080/10498850.2021.1975004

    Article  Google Scholar 

  7. Wijayanti, I., Benjakul, S., Chantakun, K., Prodpran, T., Sookchoo, P.: Effect of asian sea bass bio-calcium on textural, rheological, sensorial properties and nutritive value of indian mackerel fish spread at different levels of potato starch. Int. J. Food Sci. Technol. 57(5), 3181–3195 (2022). https://doi.org/10.1111/ijfs.15651

    Article  Google Scholar 

  8. Wijayanti, I., Benjakul, S., Saetang, J., Prodpran, T., Sookchoo, P.: Soluble asian sea bass bone bio-calcium: characteristics, bioavailability across CaCo‐2 cells and fortification into apple juice. Int. J. Food Sci. Technol. (2022). https://doi.org/10.1111/ijfs.15904

    Article  Google Scholar 

  9. FAO: Globefish Highlights: A Quarterly Update on World Seafood Markets. FAO, Rome (2019)

    Google Scholar 

  10. Kaewdang, O., Benjakul, S., Kaewmanee, T., Kishimura, H.: Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chem. 155, 264–270 (2014). https://doi.org/10.1016/j.foodchem.2014.01.076

    Article  Google Scholar 

  11. Klomklao, S., Benjakul, S.: Protein hydrolysates prepared from the viscera of skipjack tuna (Katsuwonus pelmamis): antioxidative activity and functional properties. Turk. J. Fish. Aquat. Sci. 18, 69–79 (2018). https://doi.org/10.4194/1303-2712-v18_1_08

    Article  Google Scholar 

  12. de Oliveira, D.A., Licodiedoff, S., Furigo Jr, A., Ninow, J.L., Bork, J.A., Podestá, R., Block, J.M., Waszczynskyj, N.: Enzymatic extraction of oil from yellowfin tuna (Thunnus albacares) by-products: a comparison with other extraction methods. Int. J. Food Sci. Technol. 52, 699–705 (2017). https://doi.org/10.1111/ijfs.13324

    Article  Google Scholar 

  13. Pudtikajorn, K., Benjakul, S.: Simple wet rendering method for extraction of prime quality oil from skipjack tuna eyeballs. Eur. J. Lipid Sci. Technol. 122, 2000077 (2020). https://doi.org/10.1002/ejlt.202000077

    Article  Google Scholar 

  14. Pudtikajorn, K., Sae-leaw, T., Singh, A., Benjakul, S.: Mild heating process and antioxidant incorporation increase quality and oxidation stability of oil from skipjack tuna (Katsuwonus pelamis) eyeball. Eur. J. Lipid Sci. Technol. 124, 2000391 (2021). https://doi.org/10.1002/ejlt.202000391

    Article  Google Scholar 

  15. O’Quin, K.E., Doshi, P., Lyon, A., Hoenemeyer, E., Yoshizawa, M., Jeffery, W.R.: Complex evolutionary and genetic patterns characterize the loss of scleral ossification in the blind cavefish Astyanax mexicanus. PLoS ONE 10, e0142208 (2015). https://doi.org/10.1371/journal.pone.0142208

    Article  Google Scholar 

  16. Franz-Odendaal, T.A., Ryan, K., Hall, B.K.: Developmental and morphological variation in the teleost craniofacial skeleton reveals an unusual mode of ossification. J. Exp. Zool. Part B 308, 709–721 (2007). https://doi.org/10.1002/jez.b.21185

    Article  Google Scholar 

  17. Peinado, I., Miles, W., Koutsidis, G.: Odour characteristics of seafood flavour formulations produced with fish by-products incorporating EPA, DHA and fish oil. Food Chem. 212, 612–619 (2016). https://doi.org/10.1016/j.foodchem.2016.06.023

    Article  Google Scholar 

  18. Benjakul, S., Mad-Ali, S., Senphan, T., Sookchoo, P.: Biocalcium powder from precooked skipjack tuna bone: production and its characteristics. J. Food Biochem. 41, e12412 (2017). https://doi.org/10.1111/jfbc.12412

    Article  Google Scholar 

  19. Tacias-Pascacio, V.G., Morellon-Sterling, R., Siar, E.H., Tavano, O., Berenguer-Murcia, A., Fernandez-Lafudente, R.: Use of alcalase in the production of bioactive peptides: a review. Int. J. Biol. Macromol. 165, 2143–2196 (2020). https://doi.org/10.1016/j.ijbiomac.2020.10.060

  20. AOAC: Official Methods of Analysis. Association of Official Analytical Chemists, Maryland (2002)

  21. Idowu, A.T., Benjakul, S., Sinthusamran, S., Sookchoo, P., Kishimura, H.: Protein hydrolysate from salmon frames: production, characteristics and antioxidative activity. J. Food Biochem. 43, e12734 (2019). https://doi.org/10.1111/jfbc.12734

    Article  Google Scholar 

  22. Benjakul, S., Morrissey, M.T.: Protein hydrolysates from Pacific whiting solid wastes. J. Agric. Food Chem. 45, 3423–3430 (1997). https://doi.org/10.1021/jf970294g

    Article  Google Scholar 

  23. Robinson, H., Hodgen, C.: Protein estimation with the biuret method. J. Biol. Chem. 135, 707–725 (1940). https://doi.org/10.1016/S0021-9258(18)73134-7

    Article  Google Scholar 

  24. Bergman, I., Loxley, R.: Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal. Chem. 35, 1961–1965 (1963). https://doi.org/10.1021/ac60205a053

    Article  Google Scholar 

  25. Milenkovic, B., Stajic, J.M., Stojic, N., Pucarevic, M., Strbac, S.: Evaluation of heavy metals and radionuclided in fish and seafood products. Chemosphere 229, 324–331 (2019). https://doi.org/10.1016/j.chemosphere.2019.04.189

    Article  Google Scholar 

  26. Wijayanti, I., Sookchoo, P., Prodpran, T., Mohan, C.O., Aluko, R.E., Benjakul, S.: Physical and chemical characteristics of asian sea bass bio-calcium powders as affected by ultrasonication treatment and drying method. J. Food Biochem. 45, e13652 (2021). https://doi.org/10.1111/jfbc.13652

    Article  Google Scholar 

  27. Chuaychan, S., Benjakul, S., Kishimura, H.: Characteristics of acid- and pepsin-soluble collagens from scale of seabass (Lates calcarifer). LWT 63, 71–76 (2015). https://doi.org/10.1016/j.lwt.2015.03.002

    Article  Google Scholar 

  28. Iglesias, J., Medina, I.: Solid-phase microextraction method for the determination of volatile compounds associated to oxidation of fish muscle. J. Chromatogr. A 1192, 9–16 (2008). https://doi.org/10.1016/j.chroma.2008.03.028

    Article  Google Scholar 

  29. Sinthusamran, S., Benjakul, S.: Physical, rheological and antioxidant properties of gelatin gel as affected by the incorporation of β-glucan. Food Hydrocoll. 79, 409–415 (2018). https://doi.org/10.1016/j.foodhyd.2018.01.018

    Article  Google Scholar 

  30. Steel, R.G.D.: Principles and Procedures of Statistics a Biometrical Approach. McGraw-Hill Book, New York (1997)

  31. Franz-Odendaal, T.A., Vickaryous, M.K.: Skeletal elements in the vertebrate eye and adnexa: morphological and developmental perspectives. Dev. Dyn. 235, 1244–1255 (2006). https://doi.org/10.1002/dvdy.20718

    Article  Google Scholar 

  32. Efthymiopoulos, I., Hellier, P., Ladommatos, N., Russo-Profili, A., Eveleigh, A., Aliev, A., Kay, A., Mills-Lamptey, B.: Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds. Ind. Crops Prod. 119, 49–56 (2018). https://doi.org/10.1016/j.indcrop.2018.04.008

    Article  Google Scholar 

  33. Bechtel, P.J., Watson, M.A., Lea, J.M., Bett-Garber, K.L., Bland, J.M.: Properties of bone from Catfish heads and frames. Food Sci. Nutr. 7, 1396–1405 (2019). https://doi.org/10.1002/fsn3.974

    Article  Google Scholar 

  34. Idowu, A.T., Benjakul, S., Sinthusamran, S., Sae-leaw, T., Suzuki, N., Kitani, Y., Sookchoo, P.: Effect of alkaline treatment on characteristics of bio-calcium and hydroxyapatite powders derived from salmon bone. Appl. Sci 10, 4141 (2020). https://doi.org/10.3390/app10124141

    Article  Google Scholar 

  35. Hamada, M., Nagai, T., Kai, N., Tanoue, Y., Mae, H., Hashimoto, M., Miyoshi, K., Kumagai, H., Saeki, K.: Inorganic constituents of bone of fish. Fish. Sci. 61, 517–520 (1995). https://doi.org/10.2331/fishsci.61.517

    Article  Google Scholar 

  36. Garner, S.C., Anderson, J., Ambrose, W.: Skeletal Tissues and Mineralization. In: Anderson, J.J.B., Garner, S.C. (eds) Calcium and Phosphorus in Health and Disease. CRC Press, Boca Raton (1995)

  37. Pisecky, J.: Handbook of Milk Powder Manufacture Copenhagen Niro A. A/S (1997)

  38. Onwulata, C.: Encapsulated and Powdered Foods. CRC Press, Boca Raton (2005). https://doi.org/10.1201/9781420028300

  39. Londoño-Restrepo, S.M., Jeronimo-Cruz, R., Millán-Malo, B.M., Rivera-Muñoz, E.M., Rodriguez-García, M.E.: Effect of the nano crystal size on the X-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci. Rep. 9, 1–12 (2019). https://doi.org/10.1038/s41598-019-42269-9

    Article  Google Scholar 

  40. Piccirillo, C., Silva, M., Pullar, R., Cruz, D., Jorge, I.B., Pintado, R., Castro, M.: Extraction and characterisation of apatite-and tricalcium phosphate-based materials from cod fish bones. Mater. Sci. Eng. C 33, 103–110 (2013). https://doi.org/10.1016/j.msec.201208.014

    Article  Google Scholar 

  41. Choël, M., Deboudt, K., Osán, J., Flament, P., Van Grieken, R.: Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy-energy-dispersive X-ray spectrometry. Anal. Chem 77(17), 5686–5692 (2005). https://doi.org/10.1021/ac050739x

    Article  Google Scholar 

  42. Liu, H., Wu, G., Song, H., Zhang, H., Ma, L., Brennan, C., Li, S., Liu, Y., Wu, J., Wang, Q.: Characterisation of antibacterial peptide fractions extracted from pomelo nucleus co-incubated with Lactobacillus. Int. J. Food Sci. Technol. 55, 2197–2207 (2020). https://doi.org/10.1111/ijfs.14473

    Article  Google Scholar 

  43. Denekamp, I.M., Antens, M., Slot, T.K., Rothenberg, G.: Selective catalytic oxidation of cyclohexene with molecular oxygen: radical versus nonradical pathways. ChemCatChem. 10, 1035–1041 (2018). https://doi.org/10.1002/cctc.201701538

    Article  Google Scholar 

  44. Benjakul, S., Mad-Ali, S., Sookchoo, P.: Characteristics of biocalcium powders from pre-cooked tongol (Thunnus tonggol) and yellowfin (Thunnus albacores) tuna bones. Food Biophys. 12, 412–421 (2017). https://doi.org/10.1007/s11483-017-9497-0

    Article  Google Scholar 

  45. Goss, S., Prushko, J., Bogner, R.: Factors affecting calcium precipitation during neutralisation in a simulated intestinal environment. J. Pharm. Sci. 99, 4183–4191 (2010). https://doi.org/10.1002/jps.22131

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Faculty of Agro-Industry, Prince of Songkla University under Agro-industrial practice project scholarship. Additionally, NSTDA chair professor grant (P-20-52297) and Prince of Songkla University (Grant No. AGR6502111N) were also acknowledged. Authors would like to thank Chotiwat manufacturing company, Ltd for providing the samples for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soottawat Benjakul.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pudtikajorn, K., Sae-leaw, T., Yesilsu, A.F. et al. Process Development and Characteristics of Biocalcium from Skipjack Tuna (Katsuwonus pelamis) Eyeball Scleral Cartilage. Waste Biomass Valor 14, 2909–2922 (2023). https://doi.org/10.1007/s12649-023-02075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02075-x

Keywords

Navigation