Log in

Characterization of Dissolved Organic Matter in Aquatic Macrophytes Derived-Biochars Using Multi-spectroscopic Analyses: Combined Effects of Pyrolysis Temperatures and Sequential Extractions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Dissolved organic matter in biochars (BDOM) influences the latter’s environmental applications. This study applied multiple spectra methods to expound the characteristics of BDOM in aquatic macrophytes (Alternanthera philoxeroides) biochars produced at different pyrolysis temperatures under sequential extractions (room-temperature water, hot water and a weak base). The results showed that the feedstock and the biochar produced at 200 °C, biochars produced at 300–500 °C and above 600 °C were unstable, metastable and stable, respectively, according to the release of dissolved organic carbon. One protein-like and four humic-like fluorophores were identified. The BDOM were dominated by humic-like components, and the pyrolysis of fluorescent components was hysteretic compared to the non-fluorescent materials. In addition, the relative molecular weight, aromaticity, and hydrophobicity of BDOM increased correspondingly under sequential extractions. High pH/temperature of extracting solution will lead to the BDOM with higher humification degree. This study also indicates humic acid and polysaccharide, as the fluorescent substance and the non-fluorescent substance, respectively, were more sensitive to pyrolysis temperature and changed firstly under sequential extractions. This study was beneficial for understanding the characteristics of BDOM at the molecular level and for predicting the possible effects and processes of biochars before large-scale applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Sankar, M.S., Dash, P., Singh, S., Lu, Y.H., Mercer, A., Chen, S.: Effect of photo-biodegradation and biodegradation on the biogeochemical cycling of dissolved organic matter across diverse surface water bodies. J. Environ. Sci. 77, 130–147 (2009)

    Article  Google Scholar 

  2. Orooji, Y., Han, N., Nezafat, Z., Shafiei, N., Shen, Z., Nasrollahzadeh, M., Karimi-Maleh, H., Luque, R., Bokhari, A., Klemeš, J.J.: Valorisation of nuts biowaste: prospects in sustainable bio(nano)catalysts and environmental applications. J. Clean. Prod. 347, 131220 (2022)

    Article  Google Scholar 

  3. Gao, Y., Wu, P., Jeyakumar, P., Bolan, N., Wang, H., Gao, B., Wang, S., Wang, B.: Biochar as a potential strategy for remediation of contaminated mining soils: mechanisms, applications, and future perspectives. J. Environ. Manage. 313, 114973 (2022)

    Article  Google Scholar 

  4. Amalina, F., Razak, A.S.A., Krishnan, S., Zularisam, A.W., Nasrullah, M.A.: Comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability—a review. Clean. Mater. 3, 100045 (2022)

    Article  Google Scholar 

  5. Deenik, J.L., Mcclellan, T., Uehara, G., Antal, M.J., Campbell, S.: Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci. Soc. Am. J. 74, 1259–1270 (2010)

    Article  Google Scholar 

  6. Chen, B., Zhao, M., Liu, C., Feng, M., Ma, S., Liu, R., Chen, K.: Comparison of copper binding properties of DOM derived from fresh and pyrolyzed biomaterials: insights from multi-spectroscopic investigation. Sci. Total Environ. 721, 137827 (2020)

    Article  Google Scholar 

  7. Uchimiya, M., Hiradate, S., Antal, M.J.: Influence of carbonization methods on the aromaticity of pyrogenic dissolved organic carbon. Energy Fuels 29, 2503–2513 (2015)

    Article  Google Scholar 

  8. Liu, P., Ptacek, C.J., Blowes, D.W., Berti, W.R., Landis, R.C.: Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures. J. Environ. Qual. 44(2), 684–695 (2015)

    Article  Google Scholar 

  9. Jamieson, T., Sager, E., Guéguen, C.: Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation–emission fluorescence spectroscopies. Chemosphere 103, 197–204 (2014)

    Article  Google Scholar 

  10. Smith, C.R., Sleighter, R.L., Hatcher, P.G., Lee, J.W.: Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 47, 13294–13302 (2013)

    Article  Google Scholar 

  11. Tang, J., Li, X., Luo, Y., Li, G., Khan, S.: Spectroscopic characterization of dissolved organic matter derived from different biochars and their polycylic aromatic hydrocarbons (PAHS) binding affinity. Chemosphere 152, 399–406 (2016)

    Article  Google Scholar 

  12. Li, Q., Xu, M., Wang, G., Chen, R., Qiao, W., Wang, X.: Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment. Bioresour. Technol. 249, 1009–1016 (2018)

    Article  Google Scholar 

  13. You, H., Zhang, Y., Li, W., Li, Y., Feng, X.: Removal of NO3-–N in alkaline rare earth industry effluent using modified coconut shell biochar. Water Sci. Technol. 80, 784 (2019)

    Article  Google Scholar 

  14. Wei, S., Zhu, M., Fan, X., Song, J., Peng, P.A., Li, K., Jia, W., Song, H.: Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere 218, 624–631 (2019)

    Article  Google Scholar 

  15. Rovira, P., Ramón Vallejo, V.: Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol. Biochem. 39, 202–215 (2017)

    Article  Google Scholar 

  16. Chen, X., Yu, M., He, X., Zheng, M., **, B., Sun, Y., Fu, X., Su, J.: Fate of dissolved organic matter substructure in a full-scale wastewater treatment plant by using size exclusion chromatography multi-excitation-emission matrix analysis. J. Clean. Prod. 328, 129677 (2021)

    Article  Google Scholar 

  17. Stastny, K., Stepanova, H., Hlavova, K., Faldyna, M.: Identification and determination of deoxynivalenol (don) and deepoxy-deoxynivalenol (dom-1) in pig colostrum and serum using liquid chromatography in combination with high resolution mass spectrometry (LC-MS/MS (HR)). J. Chromatogr. B. 1126–1127, 121735 (2019)

    Article  Google Scholar 

  18. Bai, L., Zhao, Z., Wang, C., Wang, C., Liu, X., Jiang, H.: Multi-spectroscopic investigation on the complexation of tetracycline with dissolved organic matter derived from algae and macrophyte. Chemosphere 187, 421–429 (2017)

    Article  Google Scholar 

  19. Chen, B., Huang, W., Ma, S., Feng, M., Liu, C., Gu, X., Chen, K.: Characterization of chromophoric dissolved organic matter in the littoral zones of eutrophic lakes Taihu and Hongze during the algal bloom season. Water 10, 861 (2018)

    Article  Google Scholar 

  20. Qu, H.L., Guo, X.J., Chen, Y.S., Dai, B.L., He, J., Zhu, D.W.: Characterization of dissolved organic matter from effluents in a dry anaerobic digestion process using spectroscopic techniques and multivariate statistical analysis. Waste Biomass Valorization 8, 793–802 (2017)

    Article  Google Scholar 

  21. Guo, X.-J., He, X.-S., Li, C.-W., Li, N.-X.: The binding properties of copper and lead onto compost-derived DOM using Fourier-transform infrared, UV–vis and fluorescence spectra combined with two-dimensional correlation analysis. J. Hazard. Mater. 365, 457–466 (2019)

    Article  Google Scholar 

  22. Liu, X., Renard, C., Bureau, S., Bourvellec, C.L.: Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydr. Polym. 263, 117935 (2021)

    Article  Google Scholar 

  23. Dhote, S., Dixit, S.: Water quality improvement through macrophytes—a review. Environ. Monit. Assess. 152, 149–153 (2009)

    Article  Google Scholar 

  24. He, Y., Song, N., Jiang, H.L.: Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes. Environ. Sci. Pollut. Res. 25, 9928–9939 (2018)

    Article  Google Scholar 

  25. Welsch, M., Yavitt, J.B.: Early stages of decay of Lythrum salicaria L. and Typha latifolia L. in a standing-dead position. Aquat. Bot. 75, 45–57 (2003)

    Article  Google Scholar 

  26. Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M., Usman, A.R.A.: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from Conocarpus wastes. Bioresour. Technol. 131, 374–379 (2013)

    Article  Google Scholar 

  27. ASTM: D1762–84 Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM International, West Conshohocken (2007)

    Google Scholar 

  28. Ohno, T., He, Z.: Fluorescence spectroscopic analysis of organic matter fractions: the current status and a tutorial case study. In: He, Z. (ed.) Environmental Chemistry of Animal Manure, pp. 83–103. Nova Science Publishers, New York (2011)

    Google Scholar 

  29. Ni, M., Li, S.: Biodegradability of riverine dissolved organic carbon in a dry-hot valley region: initial trophic controls and variations in chemical composition. J. Hydrol. 574, 430–435 (2019)

    Article  Google Scholar 

  30. Henderson, R.K., Andy, B., Parsons, S.A., Jefferson, B.: Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res. 42, 3435–3445 (2008)

    Article  Google Scholar 

  31. Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J.M., Parlanti, E.: Properties of fluorescent dissolved organic matter in the Gironde estuary. Org. Geochem. 40, 706–719 (2009)

    Article  Google Scholar 

  32. Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., Saccomandi, F.: Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38, 45–50 (1999)

    Article  Google Scholar 

  33. Hur, J., Park, M.-H., Schlautman, M.A.: Microbial transformation of dissolved leaf litter organic matter and its effects on selected organic matter operational descriptors. Environ. Sci. Technol. 43, 2315–2321 (2009)

    Article  Google Scholar 

  34. Murphy, K.R., Stedmon, C.A., Graeber, D., Bro, R.: Fluorescence spectroscopy and multi-way techniques. Parafac. Anal. Methods 5, 6557–6566 (2013)

    Article  Google Scholar 

  35. Noda, I., Ozaki, Y.: Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy. Wiley, Chichester (2005)

    Google Scholar 

  36. He, Z., Mao, J., Honeycutt, C.W., Ohno, T., Hunt, J.F., Cade-Menun, B.J.: Characterization of plant-derived water extractable organic matter by multiple spectroscopic techniques. Biol. Fertil. Soils 45, 609–616 (2009)

    Article  Google Scholar 

  37. Xu, J., Wang, Y., Gao, D., Yan, Z., Gao, C., Wang, L.: Optical properties and spatial distribution of chromophoric dissolved organic matter (CDOM) in Poyang lake, China. J. Great Lakes Res. 43, 700–709 (2017)

    Article  Google Scholar 

  38. Liu, C.H., Chu, W., Li, H., Boyd, S.A., Teppen, B.J., Mao, J., Lehmann, J., Zhang, W.: Quantification and characterization of dissolved organic carbon from biochars. Geoderma 335, 161–169 (2019)

    Article  Google Scholar 

  39. Lin, C.W., Wu, C.-H., Tang, C.T., Chang, S.H.: Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water. Bioresour. Technol. 124, 45–51 (2012)

    Article  Google Scholar 

  40. Martias, C., Tedetti, M., Lantoine, F., Jamet, L., Dupouy, C.: Characterization and sources of colored dissolved organic matter in a coral reef ecosystem subject to ultramafic erosion pressure (New Caledonia, southwest Pacific). Sci. Total Environ. 616, 438–452 (2018)

    Article  Google Scholar 

  41. Matilainen, A., Gjessing, E.T., Lahtinen, T., Hed, L., Bhatnagar, A., Sillanpää, M.: An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83, 1431–1442 (2011)

    Article  Google Scholar 

  42. Burhenne, L., Messmer, J., Aicher, T., Laborie, M.-P.: The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J. Anal. Appl. Pyrolysis 101, 177–184 (2013)

    Article  Google Scholar 

  43. Murphy, K.R., Bro, R., Stedmon, C.A.: Chemometric analysis of organic matter fluorescence. In: Coble, P.G., Lead, J., Baker, A., Reynolds, D.M., Spencer, R.G.M. (eds.) Aquatic Organic Matter Fluorescence, pp. 339–375. Cambridge University Press, New York (2014)

    Chapter  Google Scholar 

  44. Osburn, C.L., Handsel, L.T., Mikan, M.P., Paerl, H.W., Montgomery, M.T.: Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary. Environ. Sci. Technol. 46, 8628–8636 (2012)

    Article  Google Scholar 

  45. Lambert, T., Bouillon, S., Darchambeau, F., Massicotte, P., Borges, A.V.: Shift in the chemical composition of dissolved organic matter in the Congo river network. Biogeosciences 13, 5405–5420 (2016)

    Article  Google Scholar 

  46. Søndergaard, M., Stedmon, C.A., Borch, N.H.: Fate of terrigenous dissolved organic matter (DOM) in estuaries: aggregation and bioavailability. Ophelia 57, 161–176 (2003)

    Article  Google Scholar 

  47. Wheeler, K., Levia, D., Hudson, J.: Tracking senescence-induced patterns in leaf litter leachate using parallel factor analysis (Parafac) modeling and self-organizing maps. J. Geophys. Res. Biogeosci. 122, 2233–2250 (2017)

    Article  Google Scholar 

  48. Podgorski, D.C., Zito, P., Mcguire, J.T., Martinovic-Weigelt, D., Cozzarelli, I.M., Bekins, B.A., Spencer, R.G.M.: Examining natural attenuation and acute toxicity of petroleum-derived dissolved organic matter with optical spectroscopy. Environ. Sci. Technol. 52, 6157–6166 (2018)

    Article  Google Scholar 

  49. Cawley, K.M., Ding, Y., Fourqurean, J., Jaffé, R.: Characterising the sources and fate of dissolved organic matter in shark bay, Australia: a preliminary study using optical properties and stable carbon isotopes. Mar. Freshw. Res. 63, 1098–1107 (2012)

    Article  Google Scholar 

  50. Kothawala, D.N., von Wachenfeldt, E., Koehler, B., Tranvik, L.J.: Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Sci. Total Environ. 433, 238–246 (2012)

    Article  Google Scholar 

  51. Graeber, D., Gelbrecht, J., Pusch, M.T., Anlanger, C., Schiller, D.V.: Agriculture has changed the amount and composition of dissolved organic matter in central European headwater streams. Sci. Total Environ. 438, 435–446 (2012)

    Article  Google Scholar 

  52. Li, P., Chen, L., Zhang, W., Huang, Q.: Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze estuary and its adjacent sea using fluorescence and parallel factor analysis. PLoS ONE 10, e0130852 (2015)

    Article  Google Scholar 

  53. Liu, C., Du, Y., Yin, H., Fan, C., Chen, K., Zhong, J., Gu, X.: Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging. Environ. Pollut. 246, 207–216 (2019)

    Article  Google Scholar 

  54. Osburn, C.L., Wigdahl, C.R., Fritz, S.C., Saros, J.E.: Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. great plains. Limnol. Oceanogr. 56, 2371–2390 (2011)

    Article  Google Scholar 

  55. Uchimiya, M., Liu, Z., Sistani, K.: Field-scale fluorescence fingerprinting of biochar-borne dissolved organic carbon. J. Environ. Manage. 169, 184–190 (2016)

    Article  Google Scholar 

  56. Li, M., Zhang, A., Wu, H., Liu, H., Lv, J.: Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance. J. Hazard. Mater. 334, 86–92 (2017)

    Article  Google Scholar 

  57. Jiang, Y., Cao, W., Tian, X., Jia, T., Niu, G., Zhang, J., Yuan, L.: Adsorption behavior and affecting factor for naphthalene on sediment of the yellow river in Lanzhou section. Res. Environ. Sci. 31, 1545–1553 (2018)

    Google Scholar 

  58. Awasthi, M.K., Wang, M., Chen, H., Wang, Q., Zhao, J., Ren, X., Li, D.-S., Awasthi, S.K., Shen, F., Li, R., et al.: Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresour. Technol. 224, 428–438 (2017)

    Article  Google Scholar 

  59. Hur, J., Lee, B.-M.: Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy. Chemosphere 83, 1603–1611 (2011)

    Article  Google Scholar 

  60. Gui, X., Liu, C., Li, F., Wang, J.: Effect of pyrolysis temperature on the composition of dom in manure-derived biochar. Ecotoxicol. Environ. Saf. 197, 110597 (2020)

    Article  Google Scholar 

  61. Li, W., Zhang, F., Ye, Q., Wu, D., Wang, L., Yu, Y., Deng, B., Du, J.: Composition and copper binding properties of aquatic fulvic acids in eutrophic Taihu lake, China. Chemosphere 172, 496–504 (2017)

    Article  Google Scholar 

  62. Sandt, C., Waeytens, J., Deniset-Besseau, A., Nielsen-Leroux, C., Réjasse, A.: Use and misuse of FTIR spectroscopy for studying the bio-oxidation of plastics. Spectrochim. Acta Part A 258, 119841 (2021)

    Article  Google Scholar 

  63. Kovács, R., Csontos, M., Gyngysi, S., Elek, J., Erdélyi, Z.: Surface characterization of plasma-modified low density polyethylene by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy combined with chemometrics. Polym. Test. 96, 107080 (2021)

    Article  Google Scholar 

  64. Liu, D., Lu, K., Yu, H., Gao, H., Xu, W.: Applying synchronous fluorescence spectroscopy conjunct second derivative and two-dimensional correlation to analyze the interactions of copper (II) with dissolved organic matter from an urbanized river. Talanta 235, 122738 (2021)

    Article  Google Scholar 

  65. Qian, L., Zhang, W., Yan, J., Han, L., Gao, W., Liu, R., Chen, M.: Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures. Bioresour. Technol. 206, 217–224 (2016)

    Article  Google Scholar 

  66. Ciursă, P., Pauliuc, D., Dranca, F., Ropciuc, S., Oroian, M.: Detection of honey adulterated with agave, corn, inverted sugar, maple and rice syrups using FTIR analysis. Food Control 130, 108266 (2021)

    Article  Google Scholar 

  67. Huang, M., Li, Z., Luo, N.: Application potential of biochar in environment insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals. Sci. Total Environ. 646, 220–228 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (41877544, 41877482, 42077310) and the Major Project for Water Pollution Control of Lake Taihu (No. TH2019201). We thank Yan Yan for his assistances in the DOM sequential extraction experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaining Chen or Shiqun Han.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 818 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Chen, K., Han, S. et al. Characterization of Dissolved Organic Matter in Aquatic Macrophytes Derived-Biochars Using Multi-spectroscopic Analyses: Combined Effects of Pyrolysis Temperatures and Sequential Extractions. Waste Biomass Valor 13, 4911–4923 (2022). https://doi.org/10.1007/s12649-022-01827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01827-5

Keywords

Navigation