Log in

Studies of the co-precipitation method-synthesized ZnO/CoFe2O4 nanocomposites structural, dielectric and magnetic characteristics for high-frequency application

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The co-precipitation technique is employed for preparing ZnO/CoFe2O4 composites. X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR) and Rietveld refinement techniques is performed to investigate the composite structure obtained after annealing. The Rietveld refinement method gives information about crystalline phases present in the sample. Rietveld analysis of X-ray diffraction results reveals the presence of two phases where phase 1 is zinc oxide with hexagonal structure, whereas phase 2 is cobalt ferrite with cubic structure. XRD shows the size of crystallites for phase 1 is 43 nm, and for phase 2 is 38 nm. FTIR peaks centered at 440–515 cm−1 corresponds to M–O stretching vibrations. Dielectric properties such as ε′, ε″, Tanδ, conductivity, and electric modulus of the sample have been measured at temperature 30–300 °C and the frequency range is 1–107 Hz. Dielectric parameters show dependence on frequency and temperature as well as on concentration and temperature used for synthesis of samples. Synthesized sample at temperature 400 °C and concentration 1:1 shows highest value of ε′ i.e., above 1000. To study magnetic properties VSM characterization is used. High value of ε′, Tan δ and remarkable low value of conductivity (high resistivity), retentivity (0.01–2.17 emu/g) and coercivity (34.8–213 Oe) indicate its application in high frequency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R S Yadav, J Havlica, J Masilko, J Tkacz, I Kuvritka and J Vilcakova J. Mater. Sci. Mater. Electron. 27 5992 (2016)

    Article  Google Scholar 

  2. R Nongjai, S Khan, K Asokan, H Ahmed and I Khan J. Appl. Phys. 112 84321 (2012)

    Article  Google Scholar 

  3. S M Patange, S E Shirsath, B G Toksha, S S Jadhav and K M Jadhav J. Appl. Phys. 106 23914 (2009)

    Article  Google Scholar 

  4. S S Bharambe, A Trimukhe and P Bhatia Mater. Today Proc. 23 373 (2020)

    Article  Google Scholar 

  5. A S Priya, D Geetha and N Kavitha Vacuum 160 453 (2019)

    Article  ADS  Google Scholar 

  6. D Tomar and P Jeevanandam J. Alloys Compd. 843 155815 (2020)

    Article  Google Scholar 

  7. M Shakil, U Inayat, M I Arshad, G Nabi, N R Khalid and A Shah Ceram. Int. 46 7767 (2020)

    Article  Google Scholar 

  8. A Hashhash and M Kaiser J. Electron. Mater 45 462 (2016)

    Article  ADS  Google Scholar 

  9. K K Bharathi and C V Ramana J. Mater. Res. 26 584 (2011)

    Article  ADS  Google Scholar 

  10. D R S Gangaswamy, S Bharadwaj, M C Varma, G Choudary and K H Rao J. Magn. Magn. Mater. 468 73 (2018)

    Article  ADS  Google Scholar 

  11. S Rohilla, S Kumar, P Aghamkar, S Sunder and A Agarwal J. Magn. Magn. Mater. 323 897 (2011)

    Article  ADS  Google Scholar 

  12. M I A Maksoud, A El-Ghandour, G S El-Sayyad, R A Fahim, A H El-Hanbaly and M Bekhit J. Inorg. Organomet. Polym. Mater. 30 3709 (2020)

    Article  Google Scholar 

  13. P A Vinosha, A Manikandan, A S J Ceicilia, A Dinesh, G F Nirmala, A C Preetha, Y Slimani, M A Almessiere, A Baykal and B Xavier Ceram. Int. 47 10512 (2021)

    Article  Google Scholar 

  14. D Chahar, S Taneja, P Thakur and A Thakur J. Alloys Compd. 843 155681 (2020)

    Article  Google Scholar 

  15. Mubasher and M Mumtaz J. Alloys Compd. 866 158750 (2021)

    Article  Google Scholar 

  16. A Gupta and S Rohilla Mater. Today Proc. 44 4282 (2021)

    Article  Google Scholar 

  17. W Hong et al J. Colloid Interface Sci. 485 175 (2017)

    Article  ADS  Google Scholar 

  18. L Khanna and N K Verma J. Magn. Magn. Mater. 336 1 (2013)

    Article  ADS  Google Scholar 

  19. M Yuan, Y Su, W Deng and H Zhou Chem. Eng. J. 375 122091 (2019)

    Article  Google Scholar 

  20. W Chen, Q Liu, X Zhu and M Fu Appl. Organomet. Chem. 32 4017 (2018)

    Article  Google Scholar 

  21. K C B Naidu and W Madhuri J. Magn. Magn. Mater. 420 109 (2016)

    Article  ADS  Google Scholar 

  22. M C Dimri, A Verma, S C Kashyap, D C Dube, O P Thakur and C Prakash Mater. Sci. Eng. B 133 42 (2006)

    Article  Google Scholar 

  23. N Sivakumar, A Narayanasamy, C N Chinnasamy and B Jeyadevan J. Phys. Condens. Matter. 19 386201 (2007)

    Article  ADS  Google Scholar 

  24. K W Wagner Ann. Phys 40 817 (1913)

    Article  Google Scholar 

  25. N Singh, A Agarwal and S Sanghi Appl. Phys. 11 783 (2011)

    ADS  Google Scholar 

  26. H I Hsiang, C S Hsi, C Y Tsai and L T Mei Ceram. Int. 41 4140 (2015)

    Article  Google Scholar 

  27. P Chand, S Vaish and P Kumar Phys. B Condens. Matter. 524 53 (2017)

    Article  ADS  Google Scholar 

  28. T Slatineanu, A R Iordan et al J. Mater. Sci. Eng. B. 178 1040 (2013)

    Article  Google Scholar 

  29. N Ponpandian, P Balaya and A Narayanasamy J. Phys. Condens. Matter 14 3221 (2002)

    Article  ADS  Google Scholar 

  30. M S Hossain et al J. Adv. Dielectr. 8 1850030 (2018)

    Article  ADS  Google Scholar 

  31. H B Duvuru et al Ceram. Int. 45 16512 (2019)

    Article  Google Scholar 

  32. T W Mammo et al Phys. B Condens. Matter 581 411769 (2020)

    Article  Google Scholar 

  33. A B Mugutkar, S K Gore, U B Tumberphale and R S Mane J. Magn. Magn. Mater. 502 166490 (2020)

    Article  Google Scholar 

  34. Z Bitar, W Abdeen and R Awad Mater. Res. Innov. 24 104 (2020)

    Article  Google Scholar 

  35. L W McKeen Film Properties of Plastics and Elastomers (Norwich: William Andrew) (2017)

    Google Scholar 

  36. S Choudhury, M Sinha, H Dutta, M K Mandal, S K Pradhan and A K Meikap Mater. Res. Bull. 60 446 (2014)

    Article  Google Scholar 

  37. M Z Khan, I H Gul and H Anwar J. Magn. Magn. Mater. 424 382 (2017)

    Article  ADS  Google Scholar 

  38. A Shanmugavani, R K Selvan, S Layek and C Sanjeeviraja J. Magn. Magn. Mater. 354 363 (2014)

    Article  ADS  Google Scholar 

  39. S Jangra, S Sanghi, A Agarwal, M Rangi and K Kaswan Ceram. Int. 44 7683 (2018)

    Article  Google Scholar 

  40. S Brahma, R N P Choudhary and A K Thakur Phys. B Condens. Matter 355 188 (2005)

    Article  ADS  Google Scholar 

  41. L Chauhan, A K Shukla and K Sreenivas Ceram. Int. 41 8341 (2015)

    Article  Google Scholar 

  42. A K Jonscher J. Phys. D. Appl. Phys. 32 57 (1999)

    Article  ADS  Google Scholar 

  43. M A El Hiti J. Phys. D. Appl. Phys. 29 501 (1996)

    Article  ADS  Google Scholar 

  44. H Böttger and V V Bryksinm Hop** Conduction in Solids (Berlin: Akademie-Verlag) (1985)

    Book  Google Scholar 

  45. T Wen, Y Li, D Zhang et al J. Colloid Interface Sci. 497 14 (2017)

    Article  ADS  Google Scholar 

  46. D S Mathew and R S Juang Chem. Eng. J. 129 51 (2007)

    Article  Google Scholar 

  47. C Liu and Z J Zhang Chem. Mater. 13 2092 (2001)

    Article  Google Scholar 

  48. N Biglari, A Nasiri, S Pakdel and M Nasiri J. Mater. Sci. Mater. Electron. 27 13113 (2016)

    Article  Google Scholar 

  49. J Füzer, M Strečková, S Dobák, L Ďáková, P Kollár, M Fáberová and M Vojtko J. Alloys Compd. 753 219 (2018)

    Article  Google Scholar 

  50. M M Hessien, M M Rashad, K El-Barawy and I A Ibrahim J. Magn. Magn. Mater. 320 1615 (2008)

    Article  ADS  Google Scholar 

  51. E Mehran, S F Shayesteh and F Nasehnia J. Supercond. Nov. Magn. 29 1241 (2016)

    Article  Google Scholar 

  52. A Kmita, J Żukrowski, J Kuciakowski, M Marciszko-Wiąckowska, A Żywczak, D Lachowicz and M Sikora Metall. Mater. Trans. A 52 1632 (2021)

    Article  Google Scholar 

  53. N Boda, G Boda, K C B Naidu, M Srinivas, K M Batoo, D Ravinder and A P Reddy J. Magn. Magn. Mater. 473 228 (2019)

    Article  ADS  Google Scholar 

  54. K C B Naidu and W Madhuri Bull. Mater. Sci. 40 417 (2017)

    Article  Google Scholar 

  55. J J Lu, H Y Deng and H L Huang J. Magn. Magn. Mater. 209 37 (2000)

    Article  ADS  Google Scholar 

  56. L A S De Oliveira, A Pentón-Madrigal, A P Guimarães and J P Sinnecker J. Magn. Magn. Mater. 401 890 (2016)

    Article  ADS  Google Scholar 

  57. L Kumar, P Kumar, S K Srivastava and M Kar J. Supercond. Nov. Magn. 27 1677 (2014)

    Article  Google Scholar 

  58. U Sarac, M C Baykul and Y Uguz J. Supercond. Nov. Magn 28 3105 (2015)

    Article  Google Scholar 

  59. E C Snelling Soft Ferrites Properties and Applications Chapter 1 (1969)

  60. M T Farid, I Ahmad, M Kanwal, G Murtaza, I Ali, M N Ashiq and S A Khan J. Magn. Magn. Mater. 422 337 (2017)

    Article  ADS  Google Scholar 

  61. S Li, J Pan, F Gao, D Zeng, F Qin, C He, G Dodbiba and T Fujita J. Mater. Sci. Mater. Electron. 32 13511 (2021)

    Article  Google Scholar 

  62. C Aziz and B Azhdar J. Magn. Magn. Mater. 542 168577 (2022)

    Article  Google Scholar 

  63. R R Kanna, K Sakthipandi et al Ceram. Int. 46 13695 (2020)

    Article  Google Scholar 

  64. G Rana, P Dhiman, A Kumar et al Chem. Eng. Res. Des. 175 182 (2021)

    Article  Google Scholar 

  65. M T Farid, I Ahmad et al J. Electron Mater. 46 1826 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors Jyoti Saini and Rahul Patwa would like to acknowledge University grant commission, New Delhi, India for JRF. One of the authors Dr. Sunil Rohilla acknowledge the research grant received from IQAC, CRSU through Letter No. CRSU/IQAC/2023/216.

Author information

Authors and Affiliations

Authors

Contributions

JS: methodology, investigation, synthesis, writing—original draft. SR: supervision, characterization, conceptualization, formal analysis, writing—review and editing. RP: visualization, formal analysis, literature review. SS: data curation, validation.

Corresponding author

Correspondence to S. Rohilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, J., Rohilla, S., Patwa, R. et al. Studies of the co-precipitation method-synthesized ZnO/CoFe2O4 nanocomposites structural, dielectric and magnetic characteristics for high-frequency application. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03309-x

Keywords

Navigation