Log in

Graphene-based modulator using GST-phase change material on semi-ellipsoid slot waveguide configuration

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A novel electro-absorption modulator (EAM) operating at the 1550 nm wavelength has been proposed, comprising graphene layers integrated with semi-ellipsoidal hafnium dioxide (HfO2) nanostructures embedded in a silicon dioxide (SiO2) substrate. This unique design offers several key advantages, including polarization-insensitive performance with a polarization sensitivity loss below 0.004 dB, an extended propagation length of 6800 μm, and a wide 3 dB bandwidth of 420.7 GHz. Furthermore, the mode power attenuation can be dynamically adjusted from 563.07 to 12,669.15 dB/m by tuning the graphene's chemical potential, enabling precise control over the extinction ratio, which can be varied from 15 to 23.85 dB/μm. Through meticulous optimization of critical parameters, such as the number of graphene layers, dimensions, germanium-antimony-telluride (GST) thickness between graphene sheets, spacing between HfO2 semi-ellipsoids, and semi-ellipsoid dimensions, the electro-optic switching capabilities of this design have been significantly enhanced. This innovative graphene-hafnia EAM concept offers a low-cost, energy-efficient solution for optical modulation at the 1550 nm wavelength, a crucial requirement for telecommunication and optical computing applications. The reported optimization of the unique geometry and seamless integration of two-dimensional graphene with HfO2 nanostructures represent a major breakthrough in the development of narrowband EAMs, opening up new possibilities for next-generation photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. V E Babicheva, A Boltasseva and A V Lavrinenko Nanophotonics 4 165 (2015)

    Article  Google Scholar 

  2. A V Krasavin and A V Zayats Physical Review Letters 109 053901 (2012)

    Article  ADS  Google Scholar 

  3. M Malekmohammad and R Asadi Optics Communications 395 195 (2017)

    Article  ADS  Google Scholar 

  4. A Rubab, J Khurgin and V Sorger Optics Express 26 15445 (2018)

    Article  ADS  Google Scholar 

  5. J Cheng et al Nature Communications 11 1778 (2020)

    Article  ADS  Google Scholar 

  6. C S Park, Y Guo, L C Ong, Y K Yeo, Y Wang, M T Zhou and H Harada Journal of Optical Networking 8 146 (2009)

    Article  ADS  Google Scholar 

  7. M Suzuki, N Edagawa, I Morita, S Yamamoto and S Akiba JOSA B 14 2953 (1997)

    Article  ADS  Google Scholar 

  8. I Kang, S Chandrasekhar, L Buhl, P G Bernasconi, X Liu, C R Giles and C Dorrer Optics Express 16 8480 (2008)

    Article  ADS  Google Scholar 

  9. H Y Chen, N Kaneda, J Lee, J Chen and Y K Chen Optics Express 25 5852 (2017)

    Article  ADS  Google Scholar 

  10. C H Kim Optics Express 21 12914 (2013)

    Article  ADS  Google Scholar 

  11. J M L Figueiredo, C N Ironside and C R Stanley Stanley IEEE Journal of Quantum Electronics 37 1547 (2001)

    Article  ADS  Google Scholar 

  12. Q Huang, F Bao and S He Optics Express 21 1430 (2013)

    Article  ADS  Google Scholar 

  13. S Belan, S Vergeles and P Vorobev Optics Express 21 7427 (2013)

    Article  ADS  Google Scholar 

  14. V Kolkovsky, K Lukat, E Kurth and C Kunath Solid-State Electronics 106 63 (2015)

    Article  ADS  Google Scholar 

  15. H Jiao, X Cheng, G Bao, J Han and J Zhang Applied Optics 53 A56 (2014)

    Article  Google Scholar 

  16. G T Reed, B D Timotijevic, F Y Gardes, G Z Mashanovich, W R Headley and N G Emerson Optoelectronic Integrated Circuits IX 6476 39 (2007)

    Google Scholar 

  17. P Tang, D J Towner, A L Meier and B W Wessels Applied Physics Letters 85 4615 (2004)

    Article  ADS  Google Scholar 

  18. K Tiwari, S C Sharma and N Hozhabri Aip Advances 6 045217 (2016)

    Article  ADS  Google Scholar 

  19. Z Yu, J Zheng, P Xu, W Zhang and Y Wu IEEE Photonics Technology Letters 30 250 (2017)

    Article  ADS  Google Scholar 

  20. L Ji, D Zhang, Y Xu, Y Gao, C Wu, X Wang, Z Li and X Sun IEEE Photonics Journal 11 1 (2019)

    Google Scholar 

  21. Z Chang and K S Chiang Optics Letters 41 2129 (2016)

    Article  ADS  Google Scholar 

  22. L Sun, Y Zhang, C Zhang, Y Dai, Z **n, S Zhu, X Yuan, C Min and Y Yang Optics Express 27 29273 (2019)

    Article  ADS  Google Scholar 

  23. S J Koester and M Li Applied Physics Letters 100 141101 (2012)

    Article  Google Scholar 

  24. S J Koester and M Li IEEE Journal of Selected Topics in Quantum Electronics 20 84 (2013)

    Article  ADS  Google Scholar 

  25. F Bonaccorso, Z Sun, T Hasan and A C Ferrari Nature Photonics 4 611 (2010)

    Article  ADS  Google Scholar 

  26. Y Zhou, R Lu, G Wang, J Lyu, M Tan, L Shen, R Lin, Z Yang and Y Liu Nanoscale Research Letters 16 80 (2021)

    Article  ADS  Google Scholar 

  27. S Liu, M Wang, T Liu, Y Xu, J Yue, Y Yi, X Sun and D Zhang In Photonics MDPI 9 609 (2022)

    Article  Google Scholar 

  28. X Hu and J Wang Nanophotonics 7 651 (2018)

    Article  Google Scholar 

  29. X Zou, Y Zhang, Z Li, Y Yang, S Zhang, Z Zhang, Y Zhang and Y Liu Applied Sciences 9 429 (2019)

    Article  Google Scholar 

  30. S W Ye, D Liang, R G Lu, M K Shah, X H Zou, F Yuan, F Yang and Y Liu IEEE Photonics Technology Letters 29 23 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nikoufard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalvand, H., Nikoufard, M. & Zangeneh, H.R. Graphene-based modulator using GST-phase change material on semi-ellipsoid slot waveguide configuration. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03308-y

Keywords

Navigation