Log in

Anomalous microrheology behaviour of dilute CuZnFe ferrofluids

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We report results of magnetoviscosity and magnetically induced changes in microstructural properties of a ferrofluid made of copper zinc ferrite (CuZnFe) nanoparticles. These measurements were performed by tracking thermal motion of a tracer particle and video microscopy, using a home-built microscope. It has been established that the nanoparticles align to form chain-like structures under influence of external magnetic field, which result in an anisotropy of properties in two different directions, and also a magnetic field dependency of the properties. Most ferrofluids show an isotropic nature in the absence of any external magnetic field and a field-dependent anisotropy in the presence of magnetic field. But the CuZnFe sample studied here shows an anomaly with an anisotropic behaviour even when field is zero. This is perhaps one of the first cases where such anomaly is observed. Upon application of magnetic field, the parallel and perpendicular evolve in two different trajectories. We present the measurement of viscosities, both parallel to and perpendicular to the applied field, and from therein derive microstructural properties such as elastic moduli and relaxation time. All measurements were taken at room temperature (300 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T Kruse, H G Krauthäuser, A Spanoudaki and R Pelster Phys. Rev. B 67 094206 (2003)

    Article  ADS  Google Scholar 

  2. M Chand and A Shankar Mat. Today: Proceedings 47 1575 (2021)

    Google Scholar 

  3. M Devi, P P Dutta and D Mohanta Bull. Mater. Sci. 38 221 (2015)

    Article  Google Scholar 

  4. W I Kordonski and S D Jacobs Int. J. of Mod. Phy. B10 2837 (1996)

    Article  ADS  Google Scholar 

  5. J Yao, J Chang, D Li and X Yang J. Mag. And Mag Mat. 402 28 (2016)

    Article  ADS  Google Scholar 

  6. R E Rosensweig, Y Hirota, S Tsuda and K Raj J. Phys. Cond. Mat. 20, (2008) and references therein

  7. J Singh Mehta, R Kumar, H Kumar and H Garg J. Thermal Sci. Eng. Appl. 10 020801 (2018)

    Article  Google Scholar 

  8. A Challam, M Nandikonda, N Gautam, A Vudayagiri and R Singh Journal of Optics (2023). https://doi.org/10.1007/s12596-023-01274-y

    Article  Google Scholar 

  9. S Dhara, Y Balaji, J Ananthaiah, P Sathyanarayana, V Ashoka, A Spadlo and R Dabrowski Phys. Rev. E 87 030501(R) (2013)

    Article  ADS  Google Scholar 

  10. A Mertelj, A Rešetič, S Gyergyek, D Makovec and M Čopič Soft Matter 7 125 (2011)

    Article  ADS  Google Scholar 

  11. B Yendeti, G Thirupathi, A Vudaygiri and R Singh Eur. Phys. J. E 37 70 (2014)

    Google Scholar 

  12. K I Morozov J. Magn. Magn. Mater. 122 98 (1993)

    Article  ADS  Google Scholar 

  13. A Katiyar, P Dhar, T Nandi and S K Das J. Magn. Magn. Mater. 436 35 (2017)

    Article  ADS  Google Scholar 

  14. A Ibiyemi and G T Yusuf Appl. Phys A 128 591 (2022)

    Article  ADS  Google Scholar 

  15. R Singh and G Thirupathi “Magnetic Spinels - Synthesis, Properties and Applications”, Ed. Mohinder Seehra, Intech Open, London. Chapter 7. (2017)

  16. M Gerth-Noritzsch, D Yu Borin and S Odenbach J. Phys. Condens. Matter 23 346002 (2011)

    Article  Google Scholar 

  17. S Yoon, M Gonzales-Weimuller, Y C Lee and K M Krishnan J. App. Phys. 105 07B507 (2009)

    Article  Google Scholar 

  18. T Neuberger, B Schöpf, H Hofmann, M Hofmann and B von Rechenberg J. Magn. Magn. Mater. 293 483 (2005)

    Article  ADS  Google Scholar 

  19. M Gonzales-Weimuller, M Zeisberger and K M Krishnan J. Magn. Magn. Mater. 321 1947 (2009)

    Article  ADS  Google Scholar 

  20. M Škarabot Soft Matter 6 5476 (2010)

    Article  ADS  Google Scholar 

  21. M I Shliomis and Zh Eksp Teor. Fiz. 61 2411 (1972)

    Google Scholar 

  22. M Peleg Rheol Acta 34 215 (1995)

    Article  Google Scholar 

  23. S Mahle, P Ilg and M Liu Phys. Rev. E 77 016305 (2008)

    Article  ADS  Google Scholar 

  24. O Müller, D Hahn and M Liu J. Phys.: Condens. Matter 18 S2623 (2006)

    ADS  Google Scholar 

  25. S Odenbach Phys. Rev. Lett. 89 037202 (2002)

    Article  ADS  Google Scholar 

  26. P Ilg and S Odenbach“Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids, Lect. Notes Phys.” Odenbach, S. (Ed.) 249, (Springer, Berlin Heidelberg) (2009)

  27. Odenbach S. and Müller H. W., 2005 J. Magn. Magn. Mater. 289 242 (2005)

  28. M Klokkenburg, C Vonk, E M Claesson, J D Meeldijk, B H Erné and A P Philipse J. Am. Soc. Chem. 126 16706 (2004)

    Article  Google Scholar 

  29. D A Rozhkov, E S Pyanzin, E V Novak, J J Cerdà, T Sintes, M Rontic et al Molecular Simulation 44 507 (2018)

    Article  Google Scholar 

  30. N Gautam AIP Advances. 7 056727 (2017)

    Article  ADS  Google Scholar 

  31. https://www.compadre.org/portal/items/detail.cfm?ID=7365

  32. R Desai, R V Upadhyay and R V Mehta J. Mag. Mat. 295 186 (2005) and references therein

  33. N Gautam and R Singh Mat. Res. Express 6 084012 (2019)

    Article  ADS  Google Scholar 

  34. N Gautam IEEE Trans. Magn 52 4600204 (2016)

    Article  Google Scholar 

  35. F Chen, X Liu, Z Li and S Yan Hao Fu and Zhaoqiang Yan Nanomaterials 11 2653 (2021)

    Article  Google Scholar 

  36. L J Felicia and J Philip Langmuir 29 110 (2013)

    Article  Google Scholar 

  37. J P Mctague J. Chem. Phys. 51 133 (1969)

    Article  ADS  Google Scholar 

  38. Randall M Erb, Hui S Son, Bappaditya Samanta, Vincent M Rotello and Benjamin B Yellen Nature 457 999 (2009)

    Article  ADS  Google Scholar 

  39. M Klokkenburg, B H Erné, J D Meeldijk, A Wiedenmann, A V Petukhov et al Phys. Rev. Lett. 97 185702 (2006)

    Article  ADS  Google Scholar 

  40. A Wiedenmann, A Hoell, M Kammel and P Boesecke Phys. Rev. E 68 031203 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We convey our thanks to UGC-NRC Center, School of Physics, University of Hyderabad, for providing machining facilities for our experimental setup. A. Challam thanks MoTA, Govt. of India, for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Vudayagiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Challam, A., Gautam, N., Nandikonda, M. et al. Anomalous microrheology behaviour of dilute CuZnFe ferrofluids. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03177-5

Keywords

Navigation