Log in

Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer’s: a Comprehensive Review

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases such as stroke and Alzheimer’s disease (AD) are two inter-related disorders that affect the neurons in the brain and central nervous system. Alzheimer’s is a disease by undefined origin and causes. Stroke and its most common type, ischemic stroke (IS), occurs due to the blockade of cerebral blood vessels. As an important feature, both of disorders are associated with irreversible damages to the brain and nervous system. In this regard, finding common signaling pathways and the same molecular origin between these two diseases may be a promising way for their solution. On the basis of literature appraisal, the most common signaling cascades implicated in the pathogenesis of AD and stroke including notch, autophagy, inflammatory, and insulin signaling pathways were reviewed. Furthermore, current therapeutic strategies including natural and synthetic pharmaceuticals aiming modulation of respective signaling factors were scrutinized to ameliorate neural deficits in AD and stroke. Taken together, digging deeper in the common connections and signal targeting can be greatly helpful in understanding and unified treating of these disorders.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

Data and materials of this article are included within the article and there is no additional file or supporting information file.

Abbreviations

AD:

Alzheimer’s disease

AGEs:

Advanced glycosylation end products

AMPK:

AMP-activated protein kinase

aPKC:

Atypical protein kinase C

ApoE4:

Apolipoprotein E4

APP:

Amyloid precursor protein

ARE:

Antioxidant responsive element

ASC:

Apoptosis associated speck-like protein containing a caspase recruitment domain

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

ceRNA:

Competitive endogenous RNA

COX-2:

Cyclooxygenase

CXCL8:

Chemokine (C–X–C motif) ligand 8

DAMP:

DNA-binding/damage-associated molecular pattern

DSL:

Delta/serrate/LAG2

4EBP1:

4E binding protein 1

EPO:

Erythropoietin

ERKs:

Extracellular signal-regulated kinases

GAS5:

Growth arrest-specific 5

GLP-1:

Glucagon-like peptide-1

FPRL1:

Formyl peptide receptor-like 1

GFAP:

Glial fibrillary acidic protein

HLJDD:

Huang-Lian-Jie-Du-Decotion

HMGB-1:

High-mobility group protein 1

IBA-1:

Ionized calcium binding adapter molecule 1

IGFs:

Insulin-like growth factors

IL-1β:

Interleukin-1β

iNOS:

Inducible nitric oxide synthase

IS:

Ischemic stroke

IRAKs:

Interleukin-1 receptor-associated kinases

JNKs:

C-Jun NH2-terminal kinases

KKS:

Kallikrein-kinin system

LDL:

Low-density lipoproteins

5-LOX:

5-Lipoxygenase

Lrrfip1:

Leucine-rich repeat flightless-1 interaction protein 1

MAPKs:

Mitogen-activated protein kinases

MCAO:

Middle cerebral artery occlusion

MCAO:

Middle cerebral artery occlusion

MMP-9:

Matrix metalloproteinase 9

mTOR:

Mammalian target of rapamycin

MyD88:

Myeloid differentiation primary response protein 88

NICD:

Notch intracellular domain

NLRP3:

NOD-like receptor pyrin domain-containing 3 protein

NR4A2:

Nuclear receptor subfamily 4 group A member 2

Nrf2:

Nuclear erythroid 2-related factor 2

PAEs:

Purified anthocyanin extracts

PKA:

Protein kinase A

PKC:

Protein kinase C

p70S6K:

Ribosomal protein S6 kinase beta-1

PPAR-α:

Peroxisome proliferator-activated receptor-α

ROS:

Reactive oxygen species

SAAT2:

Excitatory amino acid transporter subtype 2

TCA:

Trans-cinnamaldehyde

TK:

Tissue kallikrein

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor-α

ULK1:

Unc-51-like kinase 1

XIAP:

X-linked inhibitor of apoptosis

References

  • 2018 Alzheimer's disease facts and figures (2018) Alzheimer's & Dementia 14:367–429. https://doi.org/10.1016/j.jalz.2018.02.001

  • Abd-Elrahman KS, Hamilton A, Vasefi M, Ferguson SSG (2018) Autophagy is increased following either pharmacological or genetic silencing of mGluR5 disease signaling in Alzheimer's mouse models. Mol Brain 11:19. https://doi.org/10.1186/s13041-018-0364-9

  • Abdul-Rahman O, Sasvari-Szekely M, Ver A, Rosta K, Szasz BK, Kereszturi E, Keszler G (2012) Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats. BMC Genomics 13:81–81. https://doi.org/10.1186/1471-2164-13-81

  • Abe T, Shimamura M, Jackman K, Kurinami H, Anrather J, Zhou P, Iadecola C (2010) Key role of CD36 in toll-like receptor 2 signaling in cerebral ischemia. Stroke 41:898–904. https://doi.org/10.1161/STROKEAHA.109.572552

  • Albright CF et al (2013) Pharmacodynamics of selective inhibition of γ-secretase by avagacestat. J Pharmacol Exp Ther 344:686–695

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s A (2015) Alzheimer's disease facts and figures, Alzheimer's Dement J Alzheimer's Assoc 11

  • Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612

  • Anrather J, Iadecola C (2016) Inflammation and Stroke: an Overview Neurotherapeutics 13:661–670

    CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  • Arumugam TV et al (2006) Gamma secretase–mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med 12:621

  • Arumugam TV et al (2011) Evidence that γ-secretase-mediated notch signaling induces neuronal cell death via the nuclear factor-κB-Bcl-2-interacting mediator of cell death pathway in ischemic stroke. Mol Pharm 80:23–31. https://doi.org/10.1124/mol.111.071076

  • Baba T et al (2009) Electrical stimulation of the cerebral cortex exerts antiapoptotic, angiogenic, and anti-inflammatory effects in ischemic stroke rats through phosphoinositide 3-kinase/Akt signaling pathway. Stroke 40:e598–605. https://doi.org/10.1161/strokeaha.109.563627

  • Baek SH et al (2014) Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage. Stroke 45:2438–2443. https://doi.org/10.1161/STROKEAHA.114.005183

    Article  PubMed  PubMed Central  Google Scholar 

  • Balaganapathy P, Baik SH, Mallilankaraman K, Sobey CG, Jo DG, Arumugam TV (2018) Interplay between Notch and p53 promotes neuronal cell death in ischemic stroke. J Cereb Blood Flow Metab 38:1781–1795. https://doi.org/10.1177/0271678X17715956

  • Bao X et al (2015) Cell adhesion molecule pathway genes are regulated by cis-regulatory SNPs and show significantly altered expression in Alzheimer's disease brains. Neurobiol Aging 36:2904. e2901–2904. e2907

  • Barakat W, Safwet N, El-Maraghy NN, Zakaria MN (2014) Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade. Eur J Pharmacol 724:43–50. https://doi.org/10.1016/j.ejphar.2013.12.032

    Article  CAS  PubMed  Google Scholar 

  • Batista AF et al (2018) The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. J Pathol 245:85–100. https://doi.org/10.1002/path.5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  • Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287:2570–2581

  • Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Adams RH (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135

  • Benjamin EJ et al (2017) Heart Disease and Stroke Statistics-2017 update: a report from the American heart association circulation 135:e146-e603. https://doi.org/10.1161/cir.0000000000000485

  • Boehme AK, Esenwa C, Elkind MS (2017) Stroke risk factors, genetics, and prevention. Circ Res 120:472–495

  • Bomfim TR et al (2012a) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest 122:1339–1353. https://doi.org/10.1172/JCI57256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomfim TR et al (2012b) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Invest 122:1339–1353. https://doi.org/10.1172/jci57256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonham LW et al (2018) Insulin-like growth factor binding protein 2 is associated with biomarkers of Alzheimer's disease pathology and shows differential expression in transgenic mice. Front Neurosci 12:476. https://doi.org/10.3389/fnins.2018.00476

  • Booth R, Kim H (2014) Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood–brain barrier model. Annals of Biomedical Engineering 42:2379–2391

  • Brod S (2000) Unregulated inflammation shortens human functional longevity. Inflamm Res 49:561–570

    Article  CAS  PubMed  Google Scholar 

  • Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic Mechanisms after Cerebral Ischemia Stroke 40:e331–e339

    PubMed  Google Scholar 

  • Burguete MC, Torregrosa Pérez-Asensio G, Fernando J, Castelló-Ruiz M, Salom Gil JB, José V, Alborch E (2006) Dietary phytoestrogens improve stroke outcome after transient focal cerebral ischemia in rats. Eur J Neurosci 23:703–710

    Article  PubMed  Google Scholar 

  • Caccamo A, Magrì A, Medina DX, Wisely EV, López-Aranda MF, Silva AJ, Oddo S (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies. Aging Cell 12:370–380. https://doi.org/10.1111/acel.12057

  • Cameron B, Tse W, Lamb R, Li X, Lamb BT, Landreth GE (2012) Loss of interleukin receptor-associated kinase 4 signaling suppresses amyloid pathology and alters microglial phenotype in a mouse model of Alzheimer's disease. J Neurosci Off J Soc Neurosci 32:15112–15123. https://doi.org/10.1523/jneurosci.1729-12.2012

  • Caso JR, Pradillo JM, Hurtado O, Leza JC, Moro MA, Lizasoain I (2008) Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke. Stroke 39:1314–1320. https://doi.org/10.1161/STROKEAHA.107.498212

  • Chan ES, Shetty MS, Sajikumar S, Chen C, Soong TW, Wong BS (2016) ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Abeta impairment of insulin signaling in an Alzheimer's disease mouse model. Sci Rep 6:26119. https://doi.org/10.1038/srep26119

  • Chen F, Zhang L, Wang E, Zhang C, Li X (2018) LncRNA GAS5 regulates ischemic stroke as a competing endogenous RNA for miR-137 to regulate the Notch1 signaling pathway.  Biochem Biophys Res Commun 496:184–190. https://doi.org/10.1016/j.bbrc.2018.01.022

  • Chen FZ, Zhao Y, Chen HZ (2019) MicroRNA-98 reduces amyloid β-protein production and improves oxidative stress and mitochondrial dysfunction through the Notch signaling pathway via HEY2 in Alzheimer's disease mice. Int J Mol Med 43:91–102

  • Chen K et al (2006) Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. J Biol Chem 281:3651–3659. https://doi.org/10.1074/jbc.M508125200

  • Chen K, Thomas SR, Keaney JF Jr (2003) Beyond LDL oxidation: ROS in vascular signal transduction. Free Radical Biol Med 35:117–132

    Article  CAS  Google Scholar 

  • Chen YF, Wang YW, Huang WS, Lee MM, Wood WG, Leung YM, Tsai HY (2016) Trans-cinnamaldehyde, an essential oil in cinnamon powder, ameliorates cerebral ischemia-induced brain injury via inhibition of neuroinflammation through attenuation of iNOS, COX-2 expression and NFkappa-B signaling pathway. Neuromolecular Med 18:322–333. https://doi.org/10.1007/s12017-016-8395-9

  • Cheng YL et al (2014) Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis 62:286–295. https://doi.org/10.1016/j.nbd.2013.10.009

  • Cheung N, Rogers S, Couper DJ, Klein R, Sharrett AR, Wong TY (2007) Is diabetic retinopathy an independent risk factor for ischemic stroke? Stroke 38:398–401

    Article  PubMed  Google Scholar 

  • Chi N-F, Chien L-N, Ku H-L, Hu C-J, Chiou H-Y (2013a) Alzheimer disease and risk of stroke: a population-based cohort study. Neurology 80:705–711

    Article  PubMed  Google Scholar 

  • Cisternas P, Zolezzi JM, Martinez M, Torres VI, Wong GW, Inestrosa NC (2019) Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. J Neurochem 149:54–72. https://doi.org/10.1111/jnc.14608

    Article  CAS  PubMed  Google Scholar 

  • Collino M et al (2006) Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643. Free Radic Biol Med 41:579–589. https://doi.org/10.1016/j.freeradbiomed.2006.04.030

  • Cook M, Baker N, Lanes S, Bullock R, Wentworth C, Arrighi HM (2015) Incidence of stroke and seizure in Alzheimer’s disease dementia. Age Ageing 44:695–699. https://doi.org/10.1093/ageing/afv061

    Article  PubMed  Google Scholar 

  • Corn PG (2008) Hypoxic regulation of miR-210: shrinking targets expand HIF-1’s influence. Cancer Biol Ther 7:265–267

  • Costa LG, Garrick JM, Roquè PJ, Pellacani C (2016) Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid Med Cell Longev

  • Costa RM, Honjo T, Silva AJ (2003) Learning and memory deficits in Notch mutant mice. Curr Biol 13:1348–1354

    Article  CAS  PubMed  Google Scholar 

  • Cristofaro B et al (2013) Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models. Development 140:1720–1729. https://doi.org/10.1242/dev.092304

  • Cui HX, Chen JH, Li JW, Cheng FR, Yuan K (2018) Protection of anthocyanin from Myrica rubra against cerebral ischemia-reperfusion injury via modulation of the TLR4/NF-kappaB and NLRP3 pathways. Molecules 23. https://doi.org/10.3390/molecules23071788

  • Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ (2010) Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem 285:38951–38960. https://doi.org/10.1074/jbc.M110.178848

  • Cuyvers E, Sleegers K (2016) Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. The Lancet Neurology 15:857–868

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn RF, Ikram MA (2014) Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Med 12:130

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Monte SM (2009) Insulin Resistance and Alzheimer’s Disease BMB Rep 42:475–481. https://doi.org/10.5483/bmbrep.2009.42.8.475

    Article  PubMed  Google Scholar 

  • de la Monte SM, Wands JR (2004) Alzheimer-associated neuronal thread protein mediated cell death is linked to impaired insulin signaling. J Alzheimers Dis 6:231–242

    Article  PubMed  Google Scholar 

  • de Oliveira JS et al (2016) Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer's-like dementia: involvement of acetylcholinesterase and cell death. Neurotoxicology 57:241–250. https://doi.org/10.1016/j.neuro.2016.10.008

  • Deng L, Pan J, Peng Q, Dong Z, Wang Y (2017) Toll-like receptor 3 and interferon β mRNA expressions were increased in peripheral blood of ischemic stroke patients with good outcome. J Stroke Cerebrovasc Dis 26:559–566

  • Dong S, Maniar S, Manole MD, Sun D (2018) Cerebral hypoperfusion and other shared brain pathologies in Ischemic Stroke and Alzheimer’s Disease. Transl Stroke Res 9:238–250

    Article  CAS  PubMed  Google Scholar 

  • Donkor ES (2018) Stroke in the 21(st) century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat 2018:3238165. https://doi.org/10.1155/2018/3238165

  • Donnan GA, Baron J-C, Ma H, Davis SM (2009) Penumbral selection of patients for trials of acute stroke therapy. The Lancet Neurology 8:261–269

    Article  CAS  PubMed  Google Scholar 

  • Doody RS et al (2013) A phase 3 trial of semagacestat for treatment of Alzheimer's disease New England. J Med 369:341–350

  • Ethell DW (2010) An amyloid-notch hypothesis for Alzheimer’s disease. Neuroscientist 16:614–617

    Article  CAS  PubMed  Google Scholar 

  • Fann DY et al (2018) Evidence that NF-kappaB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol Neurobiol 55:1082–1096. https://doi.org/10.1007/s12035-017-0394-9

    Article  CAS  PubMed  Google Scholar 

  • Farkhondeh T, Samarghandian S, Pourbagher-Shahri AM, Sedaghat M (2019) The impact of curcumin and its modified formulations on Alzheimer’s disease. J Cell Physiol 234:16953–16965

    Article  CAS  PubMed  Google Scholar 

  • Fasanaro P et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883

  • Friedman T (2015) The Effect of Rosmarinic Acid on Immunological and Neurological Systems. Journal of Restorative Medicine 4:50–59

    Google Scholar 

  • Furlong LI (2013) Human Diseases through the Lens of Network Biology. Trends Genet 29:150–159

    CAS  PubMed  Google Scholar 

  • Gabbouj S et al (2019) Intranasal insulin activates Akt2 signaling pathway in the hippocampus of wild-type but not in APP/PS1 Alzheimer model mice. Neurobiol Aging 75:98–108. https://doi.org/10.1016/j.neurobiolaging.2018.11.008

  • Gæde P, Lund-Andersen H, Parving H-H, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes New England. J Med 358:580–591

  • Gamaldo A, Moghekar A, Kilada S, Resnick S, Zonderman A, O’brien R (2006) Effect of a clinical stroke on the risk of dementia in a prospective cohort. Neurology 67:1363–1369

    Article  CAS  PubMed  Google Scholar 

  • Gontier G, George C, Chaker Z, Holzenberger M, Aid S (2015) Blocking IGF signaling in adult neurons alleviates Alzheimer’s disease pathology through amyloid-beta clearance. J Neuro Off J Soc Neurosci 35:11500–11513. https://doi.org/10.1523/jneurosci.0343-15.2015

    Article  CAS  Google Scholar 

  • Griffin SJ et al (2011) Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. The Lancet 378:156–167

  • Gu J et al (2016) Combination of Ligusticum chuanxiong and Radix Paeoniae ameliorate focal cerebral ischemic in MCAO rats via endoplasmic reticulum stress-dependent apoptotic signaling pathway. J Ethnopharmacol 187:313–324

    Article  PubMed  Google Scholar 

  • Gu J, Su S, Guo J, Zhu Y, Zhao M, Duan JA (2018) Anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae against focal cerebral ischaemia via TLR4/MyD88/MAPK/NF-kappaB signalling pathway in MCAO rats. J Pharm Pharmacol 70:268–277. https://doi.org/10.1111/jphp.12841

  • Guan J, Wei X, Qu S, Lv T, Fu Q, Yuan Y (2017) Osthole prevents cerebral ischemia-reperfusion injury via the Notch signaling pathway. Biochem Cell Biol 95:459–467. https://doi.org/10.1139/bcb-2016-0233

    Article  CAS  PubMed  Google Scholar 

  • Guan T, Liu Q, Qian Y, Yang H, Kong J, Kou J, Yu B (2013a) Ruscogenin reduces cerebral ischemic injury via NF-kappaB-mediated inflammatory pathway in the mouse model of experimental stroke. Eur J Pharmacol 714:303–311. https://doi.org/10.1016/j.ejphar.2013.07.036

    Article  CAS  PubMed  Google Scholar 

  • Guan T, Liu Q, Qian Y, Yang H, Kong J, Kou J, Yu B (2013b) Ruscogenin reduces cerebral ischemic injury via NF-κB-mediated inflammatory pathway in the mouse model of experimental stroke. Eur J Pharmacol 714:303–311

    Article  CAS  PubMed  Google Scholar 

  • Gubern C et al (2014) Characterization of Gcf2/Lrrfip1 in experimental cerebral ischemia and its role as a modulator of Akt, mTOR and beta-catenin signaling pathways. Neurosci 268:48–65. https://doi.org/10.1016/j.neuroscience.2014.02.051

  • Guerrero-Romero F, Rodríguez-Morán M (1999) Proteinuria is an independent risk factor for ischemic stroke in non–insulin-dependent diabetes mellitus. Stroke 30:1787–1791

  • Guo RB, Wang GF, Zhao AP, Gu J, Sun XL, Hu G (2012) Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-kappaB-mediated inflammatory responses. PLoS One 7:e49701. https://doi.org/10.1371/journal.pone.0049701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15:40. https://doi.org/10.1186/s13024-020-00391-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall A et al (2010) Piperidine-Derived γ-Secretase Modulators Bioorganic & Medicinal Chemistry Letters 20:1306–1311

    Article  CAS  Google Scholar 

  • He P, Shen Y (2009) Interruption of beta-catenin signaling reduces neurogenesis in Alzheimer’s disease. J Neurosci Off J Soc Neurosci 29:6545–6557. https://doi.org/10.1523/jneurosci.0421-09.2009

    Article  CAS  Google Scholar 

  • Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80:1778–1783. https://doi.org/10.1212/WNL.0b013e31828726f5

  • Hellström M et al. (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

  • Henley DB, May PC, Dean RA, Siemers ER (2009) Development of semagacestat (LY450139), a functional γ-secretase inhibitor, for the treatment of Alzheimer's disease. Expert Opin Pharmacother 10:1657–1664

  • Hennes MM, O’Shaughnessy IM, Kelly TM, LaBelle P, Egan BM, Kissebah AH (1996) Insulin-resistant lipolysis in abdominally obese hypertensive individuals: role of the renin-angiotensin system. Hypertension 28:120–126

    Article  CAS  PubMed  Google Scholar 

  • Hölttä M et al (2016) A Single Dose of the γ-Secretase Inhibitor Semagacestat Alters the Cerebrospinal Fluid Peptidome in Humans. Alzheimer’s Res Ther 8:11

    Google Scholar 

  • Huang G, Cao X, Zhang X, Chang H, Yang Y, Du W, Wilson JX (2009) Effects of soybean isoflavone on the notch signal pathway of the brain in rats with cerebral ischemia. J Nutr Sci Vitaminol 55:326–331. https://doi.org/10.3177/jnsv.55.326

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Zhong R, **a Z, Song J, Feng L (2014) Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways. Molecules 19:11196–11210. https://doi.org/10.3390/molecules190811196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbs JL et al (2012) Optimization of a natural product-based class of γ-secretase modulators. J Med Chem 55:9270–9282

    Article  CAS  PubMed  Google Scholar 

  • Idris I, Gray S, Donnelly R (2001) Protein kinase C activation: isozyme-specific effects on metabolism and cardiovascular complications in diabetes. Diabetologia 44:659–673

    Article  CAS  PubMed  Google Scholar 

  • Ishii H et al (1996) Amelioration of vascular dysfunctions in diabetic rats by an oral PKC β inhibitor. Science 272:728–731

    Article  CAS  PubMed  Google Scholar 

  • Jiang M et al (2014) Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation. J Neuroinflammation 11:167. https://doi.org/10.1186/s12974-014-0167-6

  • ** L et al (2014) Pathway-based analysis tools for complex diseases: a review genomics, proteomics & bioinformatics 12:210–220

  • Josien H et al (2007) Small Conformationally Restricted Piperidine N-Arylsulfonamides as Orally Active γ-Secretase Inhibitors. Bioorg Med Chem Lett 17:5330–5335

    CAS  Google Scholar 

  • Kaminari A, Giannakas N, Tzinia A, Tsilibary EC (2017) Overexpression of matrix metalloproteinase-9 (MMP-9) rescues insulin-mediated impairment in the 5XFAD model of Alzheimer's disease. Sci Rep 7:683. https://doi.org/10.1038/s41598-017-00794-5

  • Katsel P, Roussos P, Beeri MS, Gama-Sosa MA, Gandy S, Khan S, Haroutunian V (2018) Parahippocampal gyrus expression of endothelial and insulin receptor signaling pathway genes is modulated by Alzheimer’s disease and normalized by treatment with anti-diabetic agents. PLoS One 13:e0206547. https://doi.org/10.1371/journal.pone.0206547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitazawa M et al (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer's disease model. J Immunol (Baltimore, Md : 1950) 187:6539–6549. https://doi.org/10.4049/jimmunol.1100620

  • Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK (2018) Secretase inhibitors for the treatment of Alzheimer’s disease: long road ahead. Eur J Med Chem 148:436–452

    Article  CAS  PubMed  Google Scholar 

  • Lesnick TG et al (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3:e98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Chen Y, Gibson SB (2013) Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 25:50–65. https://doi.org/10.1016/j.cellsig.2012.09.020

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang X, Wang Y, Ji H, Du Y, Liu H (2012) DAPT protects brain against cerebral ischemia by down-regulating the expression of Notch 1 and Nuclear factor kappa B in rats. Neurol Sci 33:1257–1264. https://doi.org/10.1007/s10072-012-0948-6

  • Li X, Wang MH, Qin C, Fan WH, Tian DS, Liu JL (2017) Fingolimod suppresses neuronal autophagy through the mTOR/p70S6K pathway and alleviates ischemic brain damage in mice. PLoS One 12:e0188748. https://doi.org/10.1371/journal.pone.0188748

  • Li YH et al (2016) Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-kappaB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice. Sci Rep 6:19869. https://doi.org/10.1038/srep19869

  • Liang K, Zhu L, Tan J, Shi W, He Q, Yu B (2015) Identification of autophagy signaling network that contributes to stroke in the ischemic rodent brain via gene expression. Neurosci Bull 31:480–490. https://doi.org/10.1007/s12264-015-1547-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G et al (2012) Cell adhesion molecules contribute to Alzheimer’s disease: multiple pathway analyses of two genome-wide association studies. J Neurochem 120:190–198

    Article  CAS  PubMed  Google Scholar 

  • Liu G et al (2014) Cardiovascular disease contributes to Alzheimer’s disease: evidence from large-scale genome-wide association studies. Neurobiol Aging 35:786–792

    Article  PubMed  Google Scholar 

  • Liu S et al (2016a) Curcumin protects against stroke and increases levels of Notch intracellular domain. Neurol Res 38:553–559

    Article  CAS  PubMed  Google Scholar 

  • Liu W et al (2016b) Electroacupuncture protects against ischemic stroke by reducing autophagosome formation and inhibiting autophagy through the mTORC1-ULK1 complex-Beclin1 pathway. Int J Mol Med 37:309–318

  • Liu XL, Wang G, Song W, Yang WX, Hua J, Lyu L (2018a) MicroRNA-137 promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke mice by targeting NR4A2 through the Notch pathway. J Cell Physiol 233:5255–5266. https://doi.org/10.1002/jcp.26312

  • Liu XL, Wang G, Song W, Yang WX, Hua J, Lyu L (2018b) MicroRNA‐137 promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke mice by targeting NR4A2 through the Notch pathway. J Cell Physiol 233:5255–5266

  • Liu Y-H, Zeng F, Wang Y-R, Zhou H-D, Giunta B, Tan J, Wang Y-J (2013) Immunity and Alzheimer’s disease: immunological perspectives on the development of novel therapies. Drug Discovery Today 18:1212–1220

    Article  CAS  PubMed  Google Scholar 

  • Lleó A et al (2004) Nonsteroidal anti-inflammatory drugs lower Aβ 42 and change presenilin 1 conformation. Nat Med 10:1065–1066

  • Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–1757. https://doi.org/10.1016/s0140-6736(06)68770-9

  • Lou YL et al (2012) MiR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem 370:45–51. https://doi.org/10.1007/s11010-012-1396-6

  • Luchsinger JA, Tang M-X, Stern Y, Shea S, Mayeux R (2001) Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 154:635–641

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Peng G, Zhu Y, Dong H, Amos CI, **ong M (2010) Genome-wide gene and pathway analysis. Eur J Hum Genet 18:1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv H, Li J, Che YQ (2019) CXCL8 gene silencing promotes neuroglial cells activation while inhibiting neuroinflammation through the PI3K/Akt/NF-kappaB-signaling pathway in mice with ischemic stroke. J Cell Physiol 234:7341–7355. https://doi.org/10.1002/jcp.27493

  • Lv H et al (2015) Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats. Brain Res Bull 115:30–36. https://doi.org/10.1016/j.brainresbull.2015.05.002

  • Ma T et al (2010) Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer's disease. PLoS One 5. https://doi.org/10.1371/journal.pone.0012845

  • Mehta M, Adem A, Sabbagh M (2012) New acetylcholinesterase inhibitors for Alzheimer's disease. Int J Alzheimer's Dis

  • Mesquita RF (2014) Protein kinase Cε-calcineurin cosignaling downstream of toll-like receptor 4 downregulates fibrosis and induces wound healing gene expression in cardiac myofibroblasts. Mol Cell Biol 34:574–594

  • Meyer EP, Ulmann-Schuler A, Staufenbiel M, Krucker T (2008) Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer's disease. Proc Natl Acad Sci 105:3587–3592

  • Nakano-Ito K et al (2014) E2012-induced cataract and its predictive biomarkers. Toxicol Sci 137:249–258

  • Norrving B, Kissela B (2013) The global burden of stroke and need for a continuum of care. Neurology 80:S5–S12

    Article  PubMed  Google Scholar 

  • Panza F et al (2010) γ‐Secretase inhibitors for the treatment of Alzheimer's disease: The current state CNS neuroscience & therapeutics 16:272–284

  • Pendlebury ST, Rothwell PM (2009) Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol 8:1006–1018. https://doi.org/10.1016/s1474-4422(09)70236-4

  • Pham N, Dhar A, Khalaj S, Desai K, Taghibiglou C (2014) Down regulation of brain cellular prion protein in an animal model of insulin resistance: possible implication in increased prevalence of stroke in pre-diabetics/diabetics. Biochem Biophys Res Commun 448:151–156

    Article  CAS  PubMed  Google Scholar 

  • Phng L-K, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16:196–208

  • Pinti M et al (2014) Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm‐aging”. Eur J Immunol 44:1552–1562

  • Pluta R, Bogucka-Kocka A, Ułamek-Kozioł M, Bogucki J, Januszewski S, Kocki J, Czuczwar SJ (2018) Ischemic tau protein gene induction as an additional key factor driving development of Alzheimer’s phenotype changes in CA1 area of hippocampus in an ischemic model of Alzheimer’s disease. Pharmacol Rep 70:881–884

  • Purkayastha S, Cai D (2013) Neuroinflammatory basis of metabolic syndrome. Mol Metab 2 (4): 356–63. Epub 2013/12/12. https://doi.org/10.1016/j.molmet.2013.09.005

  • Rahman M et al (2019) Discovering biomarkers and pathways shared by Alzheimer’s disease and ischemic stroke to identify novel therapeutic targets. Medicina 55:191

    Article  PubMed Central  Google Scholar 

  • Ray WJ et al (1999) Evidence for a physical interaction between presenilin and Notch. Proc Natl Acad Sci 96:3263–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren C et al (2018a) Cerebral ischemia induces angiogenesis in the peri-infarct regions via Notch1 signaling activation. Exp Neurol 304:30–40

  • Ren C et al (2018b) Cerebral ischemia induces angiogenesis in the peri-infarct regions via Notch1 signaling activation. Exp Neurol 304:30–40. https://doi.org/10.1016/j.expneurol.2018.02.013

  • Roizen M (2009) Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan Public Health Center–Based (JPHC) Study Cohort I Kokubo Y, Iso H, Ishihara J, et al (Natl Cardiovascular Ctr, Osaka, Japan; Osaka Univ, Japan; Natl Cancer Ctr, Tokyo, Japan; et al) Circulation 116: 2553–2562, 2007 Year Book of Anesthesiology and Pain Management 2009:166–167

  • Roncarati R et al (2002) The γ-secretase-generated intracellular domain of β-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc Natl Acad Sci 99:7102–7107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rösen P, Nawroth P, King G, Möller W, Tritschler HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: asummary of a Congress Series sponsored byUNESCO‐MCBN, the American Diabetes Association and the German Diabetes Society Diabetes/metabolism research and reviews 17:189–212

  • Sajan M et al (2016) Brain insulin signaling is increased in insulin-resistant states and decreases in FOXOs and PGC-1alpha and increases in Abeta1–40/42 and Phospho-Tau may abet Alzheimer development. Diabetes 65:1892–1903. https://doi.org/10.2337/db15-1428

  • Salminen A, Kauppinen A, Kaarniranta K (2017) Hypoxia/ischemia activate processing of amyloid precursor protein: impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease. J Neurochem 140:536–549

    Article  CAS  PubMed  Google Scholar 

  • Sarwar N, Gao P, Seshasai S (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease [published correction appears in Lancet. 2010; 376 (9745): 958] Lancet 375:2215–2222

  • Saura CA et al (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42:23–36

    Article  CAS  PubMed  Google Scholar 

  • Saxena A et al (2016) Prognostic significance of hyperglycemia in acute intracerebral hemorrhage: the INTERACT2 study. Stroke 47:682–688

  • Schmidt AM, Yan SD, Wautier J-L, Stern D (1999) Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84:489–497

    Article  CAS  PubMed  Google Scholar 

  • Schneider A et al (2014) Forced arm use is superior to voluntary training for motor recovery and brain plasticity after cortical ischemia in rats. Exp Transl Stroke Med 6:3

    Google Scholar 

  • Schreihofer DA, Do KD, Schreihofer AM (2005) High-soy diet decreases infarct size after permanent middle cerebral artery occlusion in female rats. Am J Physiol Regul Integr Comp Physiol 289:R103–R108

    Article  CAS  Google Scholar 

  • Shi F, Dong Z, Li H, Liu X, Liu H, Dong R (2017) MicroRNA-137 protects neurons against ischemia/reperfusion injury through regulation of the Notch signaling pathway. Exp Cell Res 352:1–8. https://doi.org/10.1016/j.yexcr.2017.01.015

  • Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive Autophagy Contributes to Neuron Death in Cerebral Ischemia. CNS Neurosci Ther 18:250–260. https://doi.org/10.1111/j.1755-5949.2012.00295.x

    Article  CAS  Google Scholar 

  • Shi S et al (2016) Gx-50 reduces beta-amyloid-induced TNF-alpha, IL-1beta, NO, and PGE2 expression and inhibits NF-kappaB signaling in a mouse model of Alzheimer's disease. Eur J Immunol 46:665–676. https://doi.org/10.1002/eji.201545855

  • Shimamura M et al (2014) OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci USA 111:8191–8196. https://doi.org/10.1073/pnas.1400544111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shutter JR et al (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313–1318

  • Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta (BBA) - Mol Basis Dis 1802:80–91

  • Stead LG et al (2009) Hyperglycemia as an independent predictor of worse outcome in non-diabetic patients presenting with acute ischemic stroke. Neurocrit Care 10:181–186

    Article  PubMed  Google Scholar 

  • Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci 104:3225–3230

  • Tagami S et al (2017) Semagacestat is a Pseudo-Inhibitor of γ-Secretase. Cell Rep 21:259–273

    CAS  PubMed  Google Scholar 

  • Takeo K et al (2014) Allosteric regulation of γ-secretase activity by a phenylimidazole-type γ-secretase modulator. Proc Natl Acad Sci 111:10544–10549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X et al (2015) Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition. Free Radic Biol Med 84:103–115. https://doi.org/10.1016/j.freeradbiomed.2015.03.003

  • Tolppanen A-M, Lavikainen P, Solomon A, Kivipelto M, Soininen H, Hartikainen S (2013a) Incidence of stroke in people with Alzheimer disease: a national register–based approach. Neurology 80:353–358

  • Tolppanen AM, Lavikainen P, Solomon A, Kivipelto M, Soininen H, Hartikainen S (2013b) Incidence of stroke in people with Alzheimer disease: a national register-based approach. Neurology 80:353–358. https://doi.org/10.1212/WNL.0b013e31827f08c5

    Article  PubMed  Google Scholar 

  • Töyry JP, Niskanen LK, Länsimies EA, Partanen KP, Uusitupa MI (1996) Autonomic neuropathy predicts the development of stroke in patients with non-insulin-dependent diabetes mellitus. Stroke 27:1316–1318

    Article  PubMed  Google Scholar 

  • Tu XK, Zhang HB, Shi SS, Liang RS, Wang CH, Chen CM, Yang WZ (2016) 5-LOX inhibitor zileuton reduces inflammatory reaction and ischemic brain damage through the activation of PI3K/Akt signaling pathway. Neurochem Res 41:2779–2787. https://doi.org/10.1007/s11064-016-1994-x

  • Tuo Q et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22:1520

    Article  CAS  PubMed  Google Scholar 

  • Vemuri P et al (2017) Age, vascular health, and Alzheimer disease biomarkers in an elderly sample. Annals of Neurology 82:706–718

  • Vijayan M, Reddy PH (2016) Stroke, vascular dementia, and Alzheimer's disease: molecular links. J Alzheimers Dis : JAD 54:427–443. https://doi.org/10.3233/jad-160527

  • Walker KA et al (2021) Neuronal insulin signaling and brain structure in nondemented older adults: the Atherosclerosis Risk in Communities Study. Neurobiol Aging 97:65–72

    Article  CAS  PubMed  Google Scholar 

  • Wang PR, Wang JS, Zhang C, Song XF, Tian N, Kong LY (2013) Huang-Lian-Jie-Du-decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway. J Ethnopharmacol 149:270–280. https://doi.org/10.1016/j.jep.2013.06.035

    Article  PubMed  Google Scholar 

  • Wang R, Tang XC (2005) Neuroprotective Effects of Huperzine A Neuro-Signals 14:71–82

    CAS  PubMed  Google Scholar 

  • Wei H et al (2016) cPKCgamma-modulated autophagy in neurons alleviates ischemic injury in brain of mice with ischemic stroke through Akt-mTOR pathway. Transl Stroke Res 7:497–511. https://doi.org/10.1007/s12975-016-0484-4

  • Wei Y et al (2017) Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40:1297–1309. https://doi.org/10.1007/s10753-017-0573-x

  • Wei Z, Chigurupati S, Arumugam TV, Jo DG, Li H, Chan SL (2011) Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke 42:2589–2594. https://doi.org/10.1161/STROKEAHA.111.614834

    Article  CAS  PubMed  Google Scholar 

  • Willis CL, Meske DS, Davis TP (2010) Protein kinase C activation modulates reversible increase in cortical blood–brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation. J Cereb Blood Flow Metab 30:1847–1859

  • Wolfe MS et al (1999) Peptidomimetic probes and molecular modeling suggest that Alzheimer’s γ-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry 38:4720–4727

    Article  CAS  PubMed  Google Scholar 

  • Woodling NS et al (2014) Suppression of Alzheimer-associated inflammation by microglial prostaglandin-E2 EP4 receptor signaling. J Neurosci Off J Soc Neurosci 34:5882–5894. https://doi.org/10.1523/jneurosci.0410-14.2014

  • Wu L-R et al (2017) Vinpocetine alleviate cerebral ischemia/reperfusion injury by down-regulating TLR4/MyD88/NF-κB signaling. Oncotarget 8:80315–80324. https://doi.org/10.18632/oncotarget.20699

  • **ang Z et al (2015) Integrating genome-wide association study and brain expression data highlights cell adhesion molecules and purine metabolism in Alzheimer’s disease. Mol Neurobiol 52:514–521

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Gao L, Shi L, Li J, Liu W, Du Y (2012) Effect of electroacupuncture intervention on expression of vascular PKC in the ischemic cerebral tissue in rats with cerebral infarction Zhen ci yan jiu=. Acupuncture Research 37:218–223

  • Yang J et al (2017) Tissue kallikrein protects against ischemic stroke by suppressing TLR4/NF-κB and activating Nrf2 signaling pathway in rats. Exp Ther Med 14:1163–1170

  • Yang L, Shah K, Wang H, Karamyan VT, Abbruscato TJ (2011) Characterization of neuroprotective effects of biphalin, an opioid receptor agonist, in a model of focal brain ischemia. J Pharmacol Exp Ther 339:499–508

  • Yang X-s, Liu M-y, Zhang H-m, Xue B-z, Shi H, Liu D-x (2014) Protein kinase C-δ mediates sepsis-induced activation of complement 5a and urokinase-type plasminogen activator signaling in macrophages. Inflamm Res 63:581–589

  • Yang X et al (2019) The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology 158:107748

  • Yang Y et al (2013) Primary prevention of macroangiopathy in patients with short-duration type 2 diabetes by intensified multifactorial intervention: seven-year follow-up of diabetes complications in Chinese. Diabetes Care 36:978–984

  • Yates SC et al (2013) Dysfunction of the mTOR pathway is a risk factor for Alzheimer’s Disease. Acta Neuropathol Commun 1:3. https://doi.org/10.1186/2051-5960-1-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Han S, Wang S, Luo Y, Zhao L, Li J (2017) cPKC γ‐mediated down‐regulation of UCHL 1 alleviates ischaemic neuronal injuries by decreasing autophagy via ERK‐mTOR pathway. J Cell Mol Med 21:3641–3657

  • Zhang H-y (2012) New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 33:1170–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Miao JM (2018) Ginkgolide K promotes astrocyte proliferation and migration after oxygen-glucose deprivation via inducing protective autophagy through the AMPK/mTOR/ULK1 signaling pathway. Eur J Pharmacol 832:96–103. https://doi.org/10.1016/j.ejphar.2018.05.029

  • Zhu L, Ye T, Tang Q, Wang Y, Wu X, Li H, Jiang Y (2016) Exercise preconditioning regulates the toll-like receptor 4/nuclear factor-kappab signaling pathway and reduces cerebral ischemia/reperfusion Inflammatory injury: a study in rats. J Stroke Cerebrovasc Dis 25:2770–2779. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.07.033

Download references

Funding

This study was funded by Kermanshah University of Medical Sciences, Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soraya Sajadimajd or Hossein Derakhshankhah.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, S., Sajadimajd, S., Alaei, L. et al. Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer’s: a Comprehensive Review. Neurotox Res 39, 1589–1612 (2021). https://doi.org/10.1007/s12640-021-00381-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00381-7

Keywords

Navigation