Log in

Purα Repaired Expanded Hexanucleotide GGGGCC Repeat Noncoding RNA-Caused Neuronal Toxicity in Neuro-2a Cells

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Expanded hexanucleotide GGGGCC repeat in a noncoding region of C9ORF72 is the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). However, its molecular pathogenesis remains unclear. In our previous study, the expanded GGGGCC repeats have been shown to be sufficient to cause neurodegeneration. In order to investigate the further role of expanded GGGGCC repeats in the neuron, the normal r(GGGGCC)3 and mutant-type expanded r(GGGGCC)30 expression vectors were transfected into Neuro-2a cells. Cell proliferation, dendrite development, and the proteins’ levels of microtubule-associated protein-2 (MAP2) and cyclin-dependent kinase-5 (CDK5) were used to evaluate the cell toxicity of GGGGCC repeats on Neuro-2a cells. The results were shown that expression of expanded GGGGCC repeats caused neuronal cell toxicity in Neuro-2a cells, enhanced the expression of pMAP2 and pCDK5. Moreover, overexpression of Purα repaired expanded GGGGCC repeat-inducing neuronal toxicity in Neuro-2a cells and reduced the expression of pMAP2 and pCDK5. In all, our findings suggested that the expanded GGGGCC repeats might cause neurodegeneration through destroyed neuron cells. And the GGGGCC repeat-induced neuronal cell toxicity was inhibited by upregulation of Purα. We inferred that Purα inhibits expanded GGGGCC repeat-inducing neurodegeneration, which might reveal a novel mechanism of neurodegenerative diseases ALS and FTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida S, Zhang Z, Coppola G, Mao W, Futai K, Karydas A, Geschwind MD, Tartaglia MC, Gao F, Gianni D, Sena-Esteves M, Geschwind DH, Miller BL, Farese RV Jr, Gao FB (2012) Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. Cell Rep 2:789–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anne SL, Saudou F, Humbert S (2007) Phosphorylation of huntingtin by cyclin-dependent kinase 5 is induced by DNA damage and regulates wild-type and mutant huntingtin toxicity in neurons. J Neurosci Off J Soc Neurosci 27:7318–7328

    Article  CAS  Google Scholar 

  • Blichenberg A, Schwanke B, Rehbein M, Garner CC, Richter D, Kindler S (1999) Identification of a cis-acting dendritic targeting element in MAP2 mRNAs. J Neurosci Off J Soc Neurosci 19:8818–8829

    Article  CAS  Google Scholar 

  • Brugg B, Matus A (1991) Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells. J Cell Biol 114:735–743

    Article  CAS  PubMed  Google Scholar 

  • Caceres A, Payne MR, Binder LI, Steward O (1983) Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc Natl Acad Sci U S A 80:1738–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejesushernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  CAS  Google Scholar 

  • Demelash A, Rudrabhatla P, Pant HC, Wang X, Amin ND, Mcwhite CD, Naizhen X, Linnoila RI (2012) Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway. Mol Biol Cell 23:2856–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759

    Article  CAS  PubMed  Google Scholar 

  • Echeverria GV, Cooper TA (2012) RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity. Brain Res 1462:100–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggers JP, Grandgenett PM, Collisson EC, Lewallen ME, Tremayne J, Singh PK, Swanson BJ, Andersen JM, Caffrey TC, High RR (2011) Cyclin dependent kinase 5 is amplified and over-expressed in pancreatic cancer and activated by mutant K-Ras. Clin Cancer Res 17:6140–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fecto F, Siddique T (2011) Making connections: pathology and genetics link amyotrophic lateral sclerosis with frontotemporal lobe dementia. J Mol Neurosci 45:663–675

    Article  PubMed  Google Scholar 

  • Feldmann G, Mishra A, Hong SM, Bisht S, Strock CJ, Ball DW, Goggins M, Maitra A, Nelkin BD (2010) Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression via suppression of Ras-Ral signaling. Cancer Res 70:4460–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Tang X, Wiedmann M, Wang X, Peng J, Zheng D, Blair LA, Marshall J, Mao Z (2003) Cdk5-Mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38:33–46

  • Hawasli A, Benavides D, Nguyen C, Kansy J, Hayashi K, Chambon P, Greengard P, Powell C, Cooper D, Bibb J (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 10:880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirokawa N (1994) Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr Opin Cell Biol 6:74–81

    Article  CAS  PubMed  Google Scholar 

  • Hsu FN, Chen MC, Chiang MC, Lin E, Lee YT, Huang PH, Lee GS, Lin H (2011) Regulation of androgen receptor and prostate cancer growth by cyclin-dependent kinase 5. J Biol Chem 286:33141–33149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson EM, Daniel DC, Gordon J (2013) The pur protein family: genetic and structural features in development and disease. J Cell Physiol 228:930–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawauchi T (2014) Cdk5 regulates multiple cellular events in neural development, function and disease. Develop Growth Differ 56:335–348

    Article  CAS  Google Scholar 

  • Liu R, Tian B, Gearing M, Hunter S, Ye K, Mao Z (2008) Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion. Proc Natl Acad Sci 105:7570–7575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079

    Article  PubMed  Google Scholar 

  • Luo M, Fan H, Nagy T, Wei H, Wang C, Liu S, Wicha MS, Guan JL (2009) Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res 69:466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizielinska S, Grönke S, Niccoli T, Ridler CE, Clayton EL, Devoy A, Moens T, Norona FE, Woollacott IO, Pietrzyk J (2014) C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345:1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolic M, Dudek H, Kwon YT, Ramos YF, Tsai LH (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev 10:816

    Article  CAS  PubMed  Google Scholar 

  • O'Rourke JR, Swanson MS (2009) Mechanisms of RNA-mediated disease. J Biol Chem 284:7419–7423

    Article  PubMed  PubMed Central  Google Scholar 

  • Rademakers R, Neumann M, Mackenzie IR (2012) Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 8:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277

    Article  CAS  PubMed  Google Scholar 

  • Renton AE, Majounie E, Waite A, Simónsánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, Swieten JCV, Myllykangas L (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards RI, Samaraweera SE, van Eyk CL, O'Keefe LV, Suter CM (2013) RNA pathogenesis via toll-like receptor-activated inflammation in expanded repeat neurodegenerative diseases. Front Mol Neurosci 6:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE (2006) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65:586–590

    Article  Google Scholar 

  • Sánchez C, Díaz-Nido J, Avila J (2000a) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61:133–168

    Article  PubMed  Google Scholar 

  • Sánchez C, Pérez M, Avila J (2000b) GSK3β-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. Eur J Cell Biol 79:252

    Article  PubMed  Google Scholar 

  • Strock CJ, Park JI, Nakakura EK, Bova GS, Isaacs JT, Ball DW, Nelkin BD (2006) Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Res 66:7509–7515

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Zhang Y, Gendron TF, Bauer PO, Chew J, Yang WY, Fostvedt E, Jansen-West K, Belzil VV, Desaro P, Johnston A, Overstreet K, Oh SY, Todd PK, Berry JD, Cudkowicz ME, Boeve BF, Dickson D, Floeter MK, Traynor BJ, Morelli C, Ratti A, Silani V, Rademakers R, Brown RH, Rothstein JD, Boylan KB, Petrucelli L, Disney MD (2014) Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron 83:1043–1050

  • Takemura R, Okabe S, Umeyama T, Kanai Y, Cowan NJ, Hirokawa N (1992) Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. J Cell Sci 103(Pt 4):953–964

    CAS  PubMed  Google Scholar 

  • Tang X, Wang X, Gong X, Tong M, Park D, **a Z, Mao Z (2005) Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyte enhancer factor 2. J Neurosci 25:4823–4834

  • Todd PK, Paulson HL (2009) RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol 67:291–300

    Google Scholar 

  • Wojtas A, Heggeli KA, Finch N, Baker M, Dejesus-Hernandez M, Younkin SG, Dickson DW, Graff-Radford NR, Rademakers R (2012) C9ORF72 repeat expansions and other FTD gene mutations in a clinical AD patient series from Mayo Clinic. Am J Neurodegener Dis 1:107–118

    PubMed  PubMed Central  Google Scholar 

  • Xu Z, Poidevin M, Li X, Li Y, Shu L, Nelson DL, Li H, Hales CM, Gearing M, Wingo TS (2013) Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci U S A 110:7778–7783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31400916 and no. 81370942), Natural Science Foundation of Hubei Province (No. 2014CFB219), and Youth Science Chenguang Plan of Wuhan City (No. 2015071704011624). We thank professor Peng ** of Emory University for providing plasmids pEGFP-N1-(GGGGCC)3 and pEGFP-N1-(GGGGCC)30.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honglian Li or Zihui Xu.

Additional information

Highlights:

Expanded rGGGGCC repeats caused neuronal cell toxicity in Neuro-2a cells

Expanded rGGGGCC repeats reduced neuronal development-related proteins and destroyed structure of neuron

Purα expression repaired rGGGGCC repeats-induced neuronal cell toxicity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Zhang, Y., Zhao, S. et al. Purα Repaired Expanded Hexanucleotide GGGGCC Repeat Noncoding RNA-Caused Neuronal Toxicity in Neuro-2a Cells. Neurotox Res 33, 693–701 (2018). https://doi.org/10.1007/s12640-017-9803-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9803-0

Keywords

Navigation