Log in

Zeolitization of Fumed Silica and Coal Fly Ash Using the Taguchi Method Toward Organic Pollutant Removal

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study aims to inspect the effect of hydrothermal parameters on the zeolitization of coal fly ash and fumed silica using the L9 orthogonal Taguchi method. The Si/Al ratio, NaOH concentration, synthesis time, and hydrothermal temperature were considered as the operational parameters. The formed crystals were examined using XRD, FTIR, SEM–EDX, TG–DTA, BET, Raman microscopy, contact angle, and cation exchange capacity measurements. The effects of the different parameters were investigated by mean and variance analysis. The ideal levels of the zeolitization process were revealed to be high temperature (140 °C), medium concentration (1.5 M), lower Si/Al ratio (4), and long-time treatment (36 h). The zeolitization rate of started materials reached 84% and Na-P1 zeolite was the main neoformed phase with high crystallinity (104%). The obtained zeolite is found to be an effective and cheap adsorbent to deal with organic pollutants such as Methylene blue (33.74 mg/g) with a removal rate of 99.8%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included in the article.

References

  1. Tironi A, Trezza MA, Irassar EF, Scian AN (2012) Thermal Treatment of Kaolin: Effect on the Pozzolanic Activity. Procedia Mater Sci 1:343–350. https://doi.org/10.1016/J.MSPRO.2012.06.046

    Article  CAS  Google Scholar 

  2. Kaur B, Srivastava R, Satpati B (2015) Ultratrace detection of toxic heavy metal ions found in water bodies using hydroxyapatite supported nanocrystalline ZSM-5 modified electrodes †. R Soc Chem. https://doi.org/10.1039/c4nj02369b

    Article  Google Scholar 

  3. Ji Y, Xu F, Wei W et al (2021) Efficient and fast adsorption of methylene blue dye onto a nanosheet MFI zeolite. J Solid State Chem 295:121917. https://doi.org/10.1016/J.JSSC.2020.121917

    Article  CAS  Google Scholar 

  4. Marino G, Bergamini MF, Teixeira MFS, Cavalheiro ÉTG (2003) Evaluation of a carbon paste electrode modified with organofunctionalized amorphous silica in the cadmium determination in a differential pulse anodic strip** voltammetric procedure. Talanta 59:1021–1028. https://doi.org/10.1016/S0039-9140(03)00004-3

    Article  CAS  PubMed  Google Scholar 

  5. Rocha Junior CAF, Santos SCA, Souza CAG et al (2012) Synthesis of zeolites from boiler fly ash: Physical, chemical and mineralogical characterization. Ceramica 58:43–52. https://doi.org/10.1590/S0366-69132012000100008

    Article  Google Scholar 

  6. Sathupunya M, Gulari E, Wongkasemjit S (2003) Na-A (LTA) zeolite synthesis directly from alumatrane and silatrane by sol-gel microwave techniques. J Eur Ceram Soc 23:1293–1303. https://doi.org/10.1016/S0955-2219(02)00287-X

    Article  CAS  Google Scholar 

  7. Wu Y, Ren X, Wang J (2009) Facile synthesis and morphology control of zeolite MCM-22 via a two-step sol–gel route with tetraethyl orthosilicate as silica source. Mater Chem Phys 113:773–779. https://doi.org/10.1016/J.MATCHEMPHYS.2008.08.008

    Article  CAS  Google Scholar 

  8. Abdullahi T, Harun Z, Othman MHD (2017) A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process. Adv Powder Technol 28:1827–1840. https://doi.org/10.1016/J.APT.2017.04.028

    Article  CAS  Google Scholar 

  9. Alkan M, Hopa Ç, Yilmaz Z, Güler H (2005) The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous Mesoporous Mater 86:176–184. https://doi.org/10.1016/J.MICROMESO.2005.07.008

    Article  CAS  Google Scholar 

  10. Rocha J, Klinowski J, Adams JM (1991) Synthesis of zeolite Na-A from metakaolinite revisited. J Chem Soc Faraday Trans 87:3091–3097. https://doi.org/10.1039/FT9918703091

    Article  CAS  Google Scholar 

  11. Guisnet M, Pinard L (2018) Zeolites : From synthesis to applications. Chem React Eng 33:3–5. https://doi.org/10.51257/a-v2-j6675

    Article  Google Scholar 

  12. Borhade AV, Kshirsagar TA (2017) Dholi AG (2017) Eco-Friendly Synthesis of Aluminosilicate Bromo Sodalite from Waste Coal Fly Ash for the Removal of Copper and Methylene Blue Dye. Arab J Sci Eng 4210(42):4479–4491. https://doi.org/10.1007/S13369-017-2759-9

    Article  Google Scholar 

  13. Sun Z, Li C, Wu D (2010) Removal of methylene blue from aqueous solution by adsorption onto zeolite synthesized from coal fly ash and its thermal regeneration. J Chem Technol Biotechnol 85:845–850. https://doi.org/10.1002/JCTB.2377

    Article  CAS  Google Scholar 

  14. Purnomo CW, Salim C, Hinode H (2012) Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash. Microporous Mesoporous Mater 162:6–13. https://doi.org/10.1016/J.MICROMESO.2012.06.007

    Article  CAS  Google Scholar 

  15. Mustakim SM, Das SK, Mishra J, et al (2020) Improvement in Fresh, Mechanical and Microstructural Properties of Fly Ash- Blast Furnace Slag Based Geopolymer Concrete By Addition of Nano and Micro Silica. Silicon https://doi.org/10.1007/s12633-020-00593-0

  16. Jithendra C, Elavenil S (2020) Effects of Silica Fume on Workability and Compressive Strength Properties of Aluminosilicate Based Flowable Geopolymer Mortar under Ambient Curing. Silicon 12:1965–1974. https://doi.org/10.1007/s12633-019-00308-0

    Article  CAS  Google Scholar 

  17. Calabrese L, Bonaccorsi L, Caprì A, Proverbio E (2014) Adhesion aspects of hydrophobic silane zeolite coatings for corrosion protection of aluminium substrate. Prog Org Coatings 77:1341–1350. https://doi.org/10.1016/J.PORGCOAT.2014.04.025

    Article  CAS  Google Scholar 

  18. Sivalingam S, Kella T, Maharana M, Sen S (2019) Efficient sono-sorptive elimination of methylene blue by fly ash-derived nano-zeolite X: Process optimization, isotherm and kinetic studies. J Clean Prod 208:1241–1254. https://doi.org/10.1016/J.JCLEPRO.2018.10.200

    Article  CAS  Google Scholar 

  19. Lin L, Lin Y, Li C et al (2016) Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water. Int J Miner Process 148:32–40. https://doi.org/10.1016/J.MINPRO.2016.01.010

    Article  CAS  Google Scholar 

  20. Yao S, Zhang L, Zhu Y et al (2020) Evaluation of heavy metal element detection in municipal solid waste incineration fly ash based on LIBS sensor. Waste Manag 102:492–498. https://doi.org/10.1016/j.wasman.2019.11.010

    Article  CAS  PubMed  Google Scholar 

  21. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363. https://doi.org/10.1016/j.pecs.2009.11.003

    Article  CAS  Google Scholar 

  22. Ferrarini SF, Cardoso AM, Paprocki A, Pires M (2016) Integrated Synthesis of Zeolites Using Coal Fly Ash: Element Distribution in the Products, Washing Waters and Effluent. J Braz Chem Soc 27:2034–2045. https://doi.org/10.5935/0103-5053.20160093

    Article  CAS  Google Scholar 

  23. Król M, Mozgawa W, Morawska J, Pichór W (2014) Spectroscopic investigation of hydrothermally synthesized zeolites from expanded perlite. Microporous Mesoporous Mater 196, 216–222. https://doi.org/10.1016/j.micromeso.2014.05.017

  24. Tabit K, Waqif M, Saâdi L (2019) Application of the Taguchi method to investigate the effects of experimental parameters in hydrothermal synthesis of Na-P1 zeolite from coal fly ash. Res Chem Intermed. https://doi.org/10.1007/S11164-019-03840-1

    Article  Google Scholar 

  25. Musyoka NM, Petrik LF, Gitari WM et al (2012) Optimization of hydrothermal synthesis of pure phase zeolite Na-P1 from South African coal fly ashes. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 47:337–350. https://doi.org/10.1080/10934529.2012.645779

    Article  CAS  Google Scholar 

  26. Irdhawati I, Suyanto H, Andani PY (2017) Zeolite-modified carbon paste electrode for determination of copper using anodic strip** voltammetry method. Alchemy J Penelit Kim 13:1. https://doi.org/10.20961/alchemy.v13i1.1808

  27. Mintova S, Valtchev V (2002) Effect of the silica source on the formation of nanosized silicalite-1: an in situ dynamic light scattering study. Microporous Mesoporous Mater 55:171–179. https://doi.org/10.1016/S1387-1811(02)00401-8

    Article  CAS  Google Scholar 

  28. Hosseini Asl SM, Javadian H, Khavarpour M et al (2019) Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. J Clean Prod 208:1131–1147. https://doi.org/10.1016/J.JCLEPRO.2018.10.186

    Article  CAS  Google Scholar 

  29. Santasnachok C, Kurniawan W, Hinode H (2015) The use of synthesized zeolites from power plant rice husk ash obtained from Thailand as adsorbent for cadmium contamination removal from zinc mining. J Environ Chem Eng 3:2115–2126. https://doi.org/10.1016/j.jece.2015.07.016

    Article  CAS  Google Scholar 

  30. Gooding OW (2004) Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods. Curr Opin Chem Biol 8:297–304. https://doi.org/10.1016/J.CBPA.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  31. Rida K, Bouraoui S, Hadnine S (2013) Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Appl Clay Sci 83–84:99–105. https://doi.org/10.1016/J.CLAY.2013.08.015

    Article  Google Scholar 

  32. Tan IAW, Hameed BH (2010) Adsorption isotherms, kinetics, thermodynamics and desorption studies of basic dye on activated carbon derived from oil palm empty fruit bunch. J Appl Sci 10:2565–2571. https://doi.org/10.3923/JAS.2010.2565.2571

    Article  CAS  Google Scholar 

  33. Chen Q, Zhang Q, Yang Y et al (2021) Synergetic effect on methylene blue adsorption to biochar with gentian violet in dyeing and printing wastewater under competitive adsorption mechanism. Case Stud Therm Eng 26:101099. https://doi.org/10.1016/J.CSITE.2021.101099

    Article  Google Scholar 

  34. Ghanadzadeh Gilani A, Ghorbanpour T, Salmanpour M (2013) Additive effect on the dimer formation of thiazine dyes. J Mol Liq 177:273–282. https://doi.org/10.1016/J.MOLLIQ.2012.09.005

    Article  CAS  Google Scholar 

  35. Vara J, Ortiz CS (2016) Thiazine dyes: Evaluation of monomeric and aggregate forms. Spectrochim Acta Part A Mol Biomol Spectrosc 166:112–120. https://doi.org/10.1016/J.SAA.2016.05.005

    Article  CAS  Google Scholar 

  36. Chang HL, Shih WH (2000) Synthesis of zeolites A and X from fly ashes and their ion-exchange behavior with cobalt ions. Ind Eng Chem Res 39:4185–4191. https://doi.org/10.1021/ie990860s

    Article  CAS  Google Scholar 

  37. Satpati B, Kore R, Srivastava R (2014) ZSM-5 Zeolite Nanosheets with Improved Catalytic Activity Synthesized Using a New Class of Structure-Directing A. Chem Eur J 20:11511–11521. https://doi.org/10.1002/chem.201402665

    Article  CAS  PubMed  Google Scholar 

  38. Lin YW, Lee WH, Wang HH et al (2021) Environmentally friendly mesoporous material derived from thin-film transistor liquid crystal display and sandblasting and its application of environmental humidity control. J Am Chem Soc 1992;114:1. https://doi.org/10.21203/rs.3.rs-509521/v1

  39. Ojha K, Pradhan NC, Samanta AN (2004) Zeolite from fly ash: Synthesis and characterization. Bull Mater Sci 27:555–564. https://doi.org/10.1007/BF02707285

    Article  CAS  Google Scholar 

  40. Farahi A, Hammani H (2020) Electro-catalytic detection of dopamine at carbon paste electrode modified with activated carbon. Int J Environ Anal Chem 100:295–310. https://doi.org/10.1080/03067319.2019.1636043

    Article  CAS  Google Scholar 

  41. Wahab MA, Guo W, Cho WJ, Ha CS (2003) Synthesis and characterization of novel amorphous hybrid silica materials. J Sol-Gel Sci Technol 27:333–341. https://doi.org/10.1023/A:1024077221572

    Article  CAS  Google Scholar 

  42. Jan A, Pu Z, Khan KA et al (2022) A Review on the Effect of Silica to Alumina Ratio, Alkaline Solution to Binder Ratio, Calcium Oxide + Ferric Oxide, Molar Concentration of Sodium Hydroxide and Sodium Silicate to Sodium Hydroxide Ratio on the Compressive Strength of Geopolymer Concrete. Silicon 14:3147–3162. https://doi.org/10.1007/s12633-021-01130-3

    Article  CAS  Google Scholar 

  43. Kazemian H, Naghdali Z, GhaffariKashani T, Farhadi F (2010) Conversion of high silicon fly ash to Na-P1 zeolite: Alkaline fusion followed by hydrothermal crystallization. Adv Powder Technol 21:279–283. https://doi.org/10.1016/j.apt.2009.12.005

    Article  CAS  Google Scholar 

  44. González T, Ureta-Zañartu MS, Marco JF, Vidal G (2019) Effect of Zeolite-Fe on graphite anode in electroactive biofilm development for application in microbial fuel cells. Appl Surf Sci 467–468:851–859. https://doi.org/10.1016/j.apsusc.2018.10.120

    Article  CAS  Google Scholar 

  45. Valášková M, Klika Z, Novosad B, Smetana B (2019) Crystallization and quantification of crystalline and non-crystalline phases in kaolin-based cordierites. Materials (Basel) 12:19–3104. https://doi.org/10.3390/ma12193104

  46. Inada M, Eguchi Y, Enomoto N, Hojo J (2005) Synthesis of zeolite from coal fly ashes with different silica–alumina composition. Fuel 84:299–304. https://doi.org/10.1016/J.FUEL.2004.08.012

    Article  CAS  Google Scholar 

  47. Lucovsky G (1987) Low-temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy. J Vac Sci Technol B Microelectron Nanom Struct 5:530. https://doi.org/10.1116/1.583944

    Article  CAS  Google Scholar 

  48. Dodin M, Paillaud J-L, Lorgouilloux Y et al (2010) A Zeolitic Material with a Three-Dimensional Pore System Formed by Straight 12- and 10-Ring Channels Synthesized with an Imidazolium Derivative as Structure-Directing Agent. J Am Chem Soc 132:10221–10223. https://doi.org/10.1021/ja103648k

    Article  CAS  PubMed  Google Scholar 

  49. Kunecki P, Panek R, Wdowin M et al (2021) Influence of the fly ash fraction after grinding process on the hydrothermal synthesis efficiency of Na-A, Na-P1, Na-X and sodalite zeolite types. Int J Coal Sci Technol 8:291–311. https://doi.org/10.1007/s40789-020-00332-1

    Article  CAS  Google Scholar 

  50. Li X, Han S, Xu J, Jiang N (2023) Green synthesis of nano-H-ZSM-5 zeolite single-crystal aggregates via an in situ reconstruction of the topology of natural clay. Microporous Mesoporous Mater 350:112441. https://doi.org/10.1016/J.MICROMESO.2023.112441

    Article  CAS  Google Scholar 

  51. Al-Nahari S, Laurencin D, Alonso B (2023) Solvent-free synthesis of zeolites: New insights into the mechanism and non-mechanochemical route. Microporous Mesoporous Mater 350:112445. https://doi.org/10.1016/J.MICROMESO.2023.112445

    Article  CAS  Google Scholar 

  52. Seghir S, Boulanger C, Diliberto S et al (2010) Enhancement of electrochemical transfer junction for cation extraction. Electrochem commun 12:1734–1737. https://doi.org/10.1016/J.ELECOM.2010.10.009

    Article  CAS  Google Scholar 

  53. Liang X, Li Y, Yan W et al (2021) Preparation of SiC reticulated porous ceramics with high strength and increased efficient filtration via fly ash addition. J Eur Ceram Soc 41:2290–2296. https://doi.org/10.1016/j.jeurceramsoc.2020.11.039

    Article  CAS  Google Scholar 

  54. Sellaoui L, Franco D, Ghalla H et al (2020) Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations. Chem Eng J 394:125011. https://doi.org/10.1016/J.CEJ.2020.125011

    Article  CAS  Google Scholar 

  55. Belaabed R, Elabed S, Addaou A et al (2016) Synthesis of LTA zeolite for bacterial adhesion. Boletín la Soc Española Cerámica y Vidr 55:152–158. https://doi.org/10.1016/J.BSECV.2016.05.001

    Article  CAS  Google Scholar 

  56. Liu R, Dangwal S, Shaik I et al (2018) Hydrophilicity-controlled MFI-type zeolite-coated mesh for oil/water separation. Sep Purif Technol 195:163–169. https://doi.org/10.1016/J.SEPPUR.2017.11.064

    Article  CAS  Google Scholar 

  57. Ninan N, Grohens Y, Elain A et al (2013) Synthesis and characterisation of gelatin/zeolite porous scaffold. Eur Polym J 49:2433–2445. https://doi.org/10.1016/J.EURPOLYMJ.2013.02.014

    Article  CAS  Google Scholar 

  58. Goswami M, Phukan P (2017) Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. J Environ Chem Eng 5:3508–3517. https://doi.org/10.1016/j.jece.2017.07.016

    Article  CAS  Google Scholar 

  59. Khanal M, Rai D, Khanal R, Bhattarai A (2020) Determination of Point Zero Charge (PZC) of Homemade Charcoals of Shorea Robusta (Sakhuwa) and Pinus Roxburghii (Salla). Int J Eng Res Technol www.ijert.org 9 https://doi.org/10.1016/S1381-5148(99)00034-6

  60. Laouini A, Jaafar-Maalej C, Limayem-Blouza I et al (2012) Preparation, Characterization and Applications of Liposomes: State of the Art. J Colloid Sci Biotechnol 1:147–168. https://doi.org/10.1166/jcsb.2012.1020

    Article  CAS  Google Scholar 

  61. Syafalni S, Abustan I, Dahlan I et al (2012) Treatment of dye wastewater using granular activated carbon and zeolite filter. Modern Applied Sci 6:2–37. https://doi.org/10.5539/mas.v6n2p37

  62. Huang C-H, Chang K-P, Ou H-D et al (2011) Adsorption of cationic dyes onto mesoporous silica. Microporous Mesoporous Mater 141:102–109. https://doi.org/10.1016/j.micromeso.2010.11.002

    Article  CAS  Google Scholar 

  63. Yang YT, Tu CZ, Shi JY et al (2022) Cu(I)-organic framework as a platform for high-efficiency selective adsorption of methylene blue and reversible iodine uptake. J Solid State Chem 311:123133. https://doi.org/10.1016/J.JSSC.2022.123133

    Article  CAS  Google Scholar 

  64. Khan MI (2020) Adsorption of methylene blue onto natural Saudi Red Clay: isotherms, kinetics and thermodynamic studies. Mater Res Express 7:55507. https://doi.org/10.1088/2053-1591/ab903c

    Article  CAS  Google Scholar 

  65. Kumar A, Jena HM (2016) Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J Clean Prod 137:1246–1259. https://doi.org/10.1016/J.JCLEPRO.2016.07.177

    Article  CAS  Google Scholar 

  66. Feng Y, Zhou H, Liu G et al (2012) Methylene blue adsorption onto swede rape straw (Brassica napus L.) modified by tartaric acid: Equilibrium, kinetic and adsorption mechanisms. Bioresour Technol 125:138–144. https://doi.org/10.1016/J.BIORTECH.2012.08.128

    Article  CAS  PubMed  Google Scholar 

  67. Chen H, Zhao J, Zhong A, ** Y (2011) Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue. Chem Eng J 174:143–150. https://doi.org/10.1016/J.CEJ.2011.08.062

    Article  CAS  Google Scholar 

  68. Zhang Y, Zheng Y, Yang Y et al (2021) Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresour Technol 337:125432. https://doi.org/10.1016/J.BIORTECH.2021.125432

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help provided by the Center of Analysis and Characterization (CAC) at Caddy Ayyad University (Marrakech, Morocco) and Ataturk University, Faculty of Engineering, Department of Metallurgical and Materials Engineering (Turkey).

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

A. Ait Baha handled all the experiments and wrote the main manuscript text. R. Idouhli and K. Tabit corrected the manuscript. O. Zakir intervened in the experimental part. B. Dikici helped with the material analysis. M. Khadiri and A. Abouelfida supervised the present work. All authors reviewed the manuscript.

Corresponding author

Correspondence to R. Idouhli.

Ethics declarations

Ethics Approval

Not Applicable (as the results of studies do not involve any human or animal).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors state that they are clear of any financial conflicts of interest or personal ties that may have seemed to affect the research presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4294 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Baha, A., Tabit, K., Idouhli, R. et al. Zeolitization of Fumed Silica and Coal Fly Ash Using the Taguchi Method Toward Organic Pollutant Removal. Silicon 15, 6173–6184 (2023). https://doi.org/10.1007/s12633-023-02501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02501-8

Keywords

Navigation