Log in

Nucleation and Initial Growth in Ultrafast Electrochemical Fabrication of P-Type Macroporous Silicon

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The nucleation process is an important factor affecting the growth rate of porous silicon. The initial growth process of ultrafast electrochemical fabrication of p-type macropores (High current density: 80 mA cm−2,150 mA cm−2,300 mA cm−2, Ultrafast etching rate: from 16 to 30 μm min−1) and clarified the formation steps of p-type porous silicon has been studied. The initial nucleation process of macropores containing three growth stages was systematically investigated. The results show that the uniform dissolution process of the nucleating layer is relatively slow during p-type porous silicon etching and a translucent nucleation layer always exists on the upper surface through the whole process of nucleation. It is very important for understanding the nucleation phase of porous silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Canham L (1998) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046–1048. https://doi.org/10.1063/1.103561

    Article  Google Scholar 

  2. Cullis AG, Canham LT, Calcott PDJ (1997) The structural and luminescence properties of porous silicon. J Appl Phys 82(3):909–965. https://doi.org/10.1063/1.366536

    Article  CAS  Google Scholar 

  3. Delerue C, Allan G, Lannoo M (1993) Theoretical aspects of the luminescence of porous silicon. Phys Rev B 48(15):11024–11036. https://doi.org/10.1103/PhysRevB.48.11024

    Article  CAS  Google Scholar 

  4. Alaya M, Benabderrahmane Zaghouani R, Khamlich S, Lazzari JL, Dimassi W (2018) Enhancement of physical properties of stain-etched porous silicon by integration of WO3 nanoparticles. Thin Solid Films 645:51–56. https://doi.org/10.1016/j.tsf.2017.10.041

    Article  CAS  Google Scholar 

  5. Hussein MJ, Yunus W, Kamari H, Zakaria A, Oleiw H (2016) Effect of current density and etching time on photoluminescence and energy band gap of p-type porous silicon. Opt Quant Electron 48(3):194. https://doi.org/10.1007/s11082-016-0476-3

    Article  CAS  Google Scholar 

  6. Ge DH, Wang MC, Liu WJ, Qin S, Yan PL, Jiao JW (2013) Formation of macro-meso-microporous multilayer structures. Electrochim Acta 88:141–146. https://doi.org/10.1016/j.electacta.2012.10.028

    Article  CAS  Google Scholar 

  7. Wang Z (1868) 3-D integration and through-silicon vias in MEMS and microsensors. J Microelectromech Syst 55(3):1211–1244. https://doi.org/10.1109/JMEMS.2015.2448681

    Article  CAS  Google Scholar 

  8. Lehmann V, Rönnebeck S (2002) MEMS techniques applied to the fabrication of anti-scatter grids for X-ray imaging. J Sensor Actuat A 95(2):202–207. https://doi.org/10.1109/MEMSYS.2001.906484

    Article  CAS  Google Scholar 

  9. Ge DH, Shi JP, Wei JX, Zhang LQ (2019) Optical sensing analysis of bilayer porous silicon nanostructure. J Phys Chem Solids 130:217–221. https://doi.org/10.1016/j.jpcs.2019.03.002

    Article  CAS  Google Scholar 

  10. Anglin E, Cheng L, Freeman W, Sailor M (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60(11):1266–1277. https://doi.org/10.1016/j.addr.2008.03.017

    Article  CAS  Google Scholar 

  11. Ksenofontova OI, Vasin AV, Egorov VV, Bobyl AV, Soldatenkov FY, Terukov EI, Ulin VP, Ulin NV, Kiselev OI (2014) Porous silicon and its applications in biology and medicine. Tech Phys 59(1):66–77. https://doi.org/10.1134/S1063784214010083

    Article  CAS  Google Scholar 

  12. Gupta B, Mai K, Lowe S, Wakefield D, Girolamo N, Gaus K, Reece P, Gooding J (2015) Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals. Anal Chem 87(19):9946–9953. https://doi.org/10.1021/acs.analchem.5b02529

    Article  CAS  Google Scholar 

  13. Ge M, Fang X, Rong J, Zhou C (2013) Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology. 24(42):422001. https://doi.org/10.1088/0957-4484/24/42/422001

    Article  CAS  Google Scholar 

  14. Wusu E, Cojocaru A, Hartz H, Carstensen J, Föll H (2011) Silicon nanowires made via macropore etching for superior Li ion batteries. Phys. Status. Solidi. A 208(6):1417–1421. https://doi.org/10.1002/pssa.201000031

    Article  CAS  Google Scholar 

  15. Seok T, Quack N, Han S, Muller R, Wu M (2016) Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica. 3(1):64. https://doi.org/10.1364/optica.3.000064

    Article  CAS  Google Scholar 

  16. Ge DH, Lu L, Zhang JH, Zhang LQ, Reece P (2017) Electrochemical fabrication of silicon-based micro-nano-hybrid porous arrays for hybrid-lattice photonic crystal. ECS J Solid State Sci Technol 6(12):893–897. https://doi.org/10.1149/2.0361712jss

    Article  CAS  Google Scholar 

  17. Lehmann V (2019) The physics of macropore formation in low doped n-type silicon. J Electrochem Soc 140(10):2836–2843. https://doi.org/10.1149/1.2220919

    Article  Google Scholar 

  18. Lehmanna V, Rönnebeck S (1999) The physics of macropore formation in low-doped p-type silicon. J Electrochem Soc 146(8):2968–2975. https://doi.org/10.1149/1.2220919

    Article  Google Scholar 

  19. Frey S, Kemell M, Carstensen J, Langa S, Föll H (2005) Fast pore etching. Phys Status Solidi A 202(8):1369–1373. https://doi.org/10.1002/pssa.200461104

    Article  CAS  Google Scholar 

  20. Ge DH, Jiao JW, Zhang S, Wang YL (2010) Fast speed nano-sized macropore formation on highly-doped n-type silicon via strong oxidizers. Electrochem Commun 12(4):603–606. https://doi.org/10.1016/j.elecom.2010.02.010

    Article  CAS  Google Scholar 

  21. Cozzi C, Polito G, Kolasinski K, Barillaro G (2017) Controlled micro- fabrication of high-aspect-ratio structures in silicon at the highest etching rates: the role of H2O2 in the anodic dissolution of silicon in acidic electrolytes. Adv Funct Mater 27(6):1604310. https://doi.org/10.1002/adfm.201770035

    Article  CAS  Google Scholar 

  22. Christophersen M, Carstensen J, Feuerhake A, Föll H (2000) Crystal orientation and electrolyte dependence for macropore nucleation and stable growth on p-type Si. Mater Sci Eng B 69-70:194–198. https://doi.org/10.1016/s0921-5107(99)00262-7

    Article  Google Scholar 

  23. Korotcenkov G, Cho BK (2010) Silicon porosification: state of the art. Crit Rev Solid State 35(3):153–260. https://doi.org/10.1080/10408436.2010.495446

    Article  CAS  Google Scholar 

  24. Vyatkin A, Starkov V, Tzeitlin V, Presting H, Konle J (2001) U. König, random and ordered macropore formation in p-type silicon. J. Electrochem. Soc. 149(1):G70–G76. https://doi.org/10.1149/1.1424898

    Article  CAS  Google Scholar 

  25. Park J, Yanagida Y, Hatsuzawa T (2016) Fabrication of p-type porous silicon using double tank electrochemical cell with halogen and LED light sources. Sensor. Actuat B 233:136–143. https://doi.org/10.1016/j.snb.2016.04.058

    Article  CAS  Google Scholar 

  26. Hejjo Al Rifai M, Christophersen M, Ottow S, Carstensen J, Föll H (2019) Dependence of macropore formation in n-Si on potential, temperature, and do**. J Electrochem Soc 147(2):627–635. https://doi.org/10.1149/1.1393244

    Article  Google Scholar 

  27. Ge DH, Li WB, Lu L, Wei J, Huang X, Zhang LQ, Reece P, Zhu SN, Gooding JJ (2018) Ultrafast fabrication of high-aspect-ratio macropores in P-type silicon: toward the mass production of microdevices. Mater Res Lett 6(11):648–654. https://doi.org/10.1080/21663831.2018.1527788

    Article  CAS  Google Scholar 

  28. Claussen J, Carstensen J, Christophersen M, Langa S, Föll H (2003) Self-organized pore formation and open-loop control in semiconductor etching. Chaos 13(1):217–224. https://doi.org/10.1063/1.1497835

    Article  CAS  Google Scholar 

  29. Carstensen J, Christophersen M, Föll H (2000) Pore formation mechanisms for the Si-HF system. Mater Sci Eng B 69-70:23–28. https://doi.org/10.1016/s0921-5107(99)00287-1

    Article  Google Scholar 

  30. Christophersen M, Carstensen J, Voigt K, Föll H (2003) Organic and aqueous electrolytes used for etching macro- and mesoporous silicon. Phys Stat Sol A 197:34–38. https://doi.org/10.1002/pssa.200306464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the Institute of Intelligent Flexible Mechatronics of Jiangsu University, and the Test Center of Jiangsu University for using F7800 for electron microscopy.

Funding

This work was supported by Natural Science Foundation of China (92163216), Natural Science Foundation of Jiangsu Province (BK20180098), Open Research Fund of National Laboratory of Solid-State Microstructures (M33042).

Author information

Authors and Affiliations

Authors

Contributions

Guangfu Zhen and Jiakang Shi did the experiment under the direction of Daohan Ge and Liqiang Zhang; Guangfu Zhen analyzed the date and prepared the manuscript under the direction of Zhibao Li and Liqiang Zhang. Daohan Ge and Liqiang Zhang discussed the results and Liqiang Zhang and Daohan Ge revised the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Daohan Ge, Zhibao Li or Liqiang Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All of the authors were involved in the preparation of the manuscript and approved to participate.

Consent for Publication

All of the authors approved for publication.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, D., Zhen, G., Shi, J. et al. Nucleation and Initial Growth in Ultrafast Electrochemical Fabrication of P-Type Macroporous Silicon. Silicon 14, 12393–12401 (2022). https://doi.org/10.1007/s12633-022-01870-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01870-w

Keywords

Navigation