Log in

3-Aminopropyltriethoxysilane-Assisted Si@SiO2/CNTs Hybrid Microspheres as Superior Anode Materials for Li-ion Batteries

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A silicon based composite (Si@SiO2/CNTs) with outstanding electrochemistry performance has been easily synthesized using a spray drying method; The composite microsphere is mainly made up of carbon nanotubes and the prepared nano silicon particles. With the help of a silane coupling agent, carbon nanotubes tightly intertwined with nano silicon particles and formed microspheres together. On the surface of the prepared nano silicon particles, a layer of oxide film plays a role as a barrier to reduce the rupture of the particles during the lithium intercalation/extraction process. In addition, the added twisted carbon nanotubes can help to maintain the conductive network, thus stabilizing the electrode working environment during the lithium intercalation/extraction process. As a superior anode material, an initial specific discharge capacity of approximately 2846.9 mAh g−1 with a coulombic efficiency of 86 % and a reversible specific capacity of 2035.9 mAh g−1 after 100 cycles at a constant density of 500 mA g−1 are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terranova M L, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M (2014) Si/C hybrid nanostructures for Li-ion anodes: an overview. J Power Sources 246:167–177

    Article  CAS  Google Scholar 

  2. Zhu G-N, Wang Y-G, **a Y-Y (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5:6652

    Article  CAS  Google Scholar 

  3. Liu X-M, Huang ZD, Oh SW, Zhang B, Ma P-C, Yuen M M F et al (2012) Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos Sci Technol 72:121–144

    Article  CAS  Google Scholar 

  4. Su L, **g Y, Zhou Z (2011) Li ion battery materials with core-shell nanostructures. Nanoscale 3:3967–3983

    Article  CAS  Google Scholar 

  5. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668

    Article  CAS  Google Scholar 

  6. Marom R, Amalraj S F, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938

    Article  CAS  Google Scholar 

  7. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243

    Article  CAS  Google Scholar 

  8. Chen Y, Du N, Zhang H, Yang D (2015) Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries. J Alloys Compd 622:966–972

    Article  CAS  Google Scholar 

  9. Wang X, Wen Z, Liu Y, Xu X, Lin (2009) Preparation and characterization of a new nanosized silicon–nickel–graphite composite as anode material for lithium ion batteries. J Power Sources 189:121–126

    Article  CAS  Google Scholar 

  10. Zhou Y, Jiang X, Chen L, Yue J, Xu H, Yang J et al (2014) Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochim Acta 127:252–258

    Article  CAS  Google Scholar 

  11. Zhong H, Zhan H, Zhou Y-H (2014) Synthesis of nanosized mesoporous silicon by magnesium-thermal method used as anode material for lithium ion battery. J Power Sources 262:10–14

    Article  CAS  Google Scholar 

  12. Yue L, Zhang W, Yang J, Zhang L (2014) Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries. Electrochim Acta 125:206–217

    Article  CAS  Google Scholar 

  13. **e J, Wang G, Huo Y, Zhang S, Cao G, Zhao X (2014) Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries. Electrochim Acta 135:94–100

    Article  CAS  Google Scholar 

  14. Shen X, Mu D, Chen S, Xu B, Wu B, Wu F (2013) Si/mesoporous carbon composite as an anode material for lithium ion batteries. J Alloys Compd 552:60–64

    Article  CAS  Google Scholar 

  15. Li J-W, Zhou A-J, Liu X-Q, Li J-Z (2013) Si nanowire anode prepared by chemical etching for high energy density lithium-ion battery. J Inorg Mater 28:1207–1212

    Article  CAS  Google Scholar 

  16. Chen S, Bao P, Huang X, Sun B, Wang G (2013) Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res 7:85–94

    Article  CAS  Google Scholar 

  17. Huang Z X, Wang Y, Wong J I, Shi W H, Yang H Y (2015) Synthesis of self-assembled cobalt sulphide coated carbon nanotube and its superior electrochemical performance as anodes for Li-ion batteries. Electrochim Acta 167:388–395

    Article  CAS  Google Scholar 

  18. Zhang J, **e Z, Li W, Dong S, Qu M (2014) High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes. Carbon 74:153–162

    Article  Google Scholar 

  19. Weng W, Lin H, Chen X, Ren J, Zhang Z, Qiu L et al (2014) Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes. J Mater Chem A 2:9306

    Article  CAS  Google Scholar 

  20. Wang X, Sun L, Agung Susantyoko R, Fan Y, Zhang Q (2014) Ultrahigh volumetric capacity lithium ion battery anodes with CNT–Si film. Nano Energy 8:71–77

    Article  CAS  Google Scholar 

  21. Shao L, Shu J, Wu K, Lin X, Li P, Shui M et al (2014) Low pressure preparation of spherical Si@C@CNT@C anode material for lithium-ion batteries. J Electroanal Chem 727:8–12

    Article  CAS  Google Scholar 

  22. Na Y-S, Yoo H, Kim T-H, Choi J, Lee W I, Choi S et al (2014) Electrochemical performance of Si-multiwall carbon nanotube nanocomposite anode synthesized by thermal plasma. Thin Solid Films 587:14–19

    Article  Google Scholar 

  23. Hieu N T, Suk J, Kim D W, Chung O H, Park J S, Kang Y (2014) Silicon nanoparticle and carbon nanotube loaded carbon nanofibers for use in lithium-ion battery anodes. Synth Met 198:36–40

    Article  CAS  Google Scholar 

  24. Hou X, Zhang M, Wang J, Hu S, Liu X, Shao Z (2015) High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries. J Alloys Compd 639:27–35

    Article  CAS  Google Scholar 

  25. Zhang M, Hou X, Wang J, Li M, Hu S, Shao Z et al (2014) Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries. J Alloys Compd 588:206–211

    Article  CAS  Google Scholar 

  26. Hou X, Wang J, Zhang M, Liu X, Shao Z, Li W et al (2014) Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries. RSC Adv 4:34615–34622

    Article  CAS  Google Scholar 

  27. Lin T-W, Salzmann C G, Shao L-D, Yu C-H, Green M L H, Tsang S-C (2009) Polyethylene glycol grafting and attachment of encapsulated magnetic iron oxide silica nanoparticles onto chlorosilanized single-wall carbon nanotubes. Carbon 47:1415–1420

    Article  CAS  Google Scholar 

  28. Titus E, Ali N, Cabral G, Gracio J, Babu P R, Jackson M J (2006) Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, fourier transform infrared, and Raman spectroscopy. J Mater Eng Perform 15:182–186

    Article  CAS  Google Scholar 

  29. Yang S, Huang G, Hu S, Hou X, Huang Y, Yue M et al (2014) Improved electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 wired by CNT networks for lithium-ion batteries. Mater Lett 118:8–11

    Article  CAS  Google Scholar 

  30. Kim T, Mo Y H, Nahm K S, Oh S M (2006) Carbon nanotubes (CNTs) as a buffer layer in silicon/CNTs composite electrodes for lithium secondary batteries. J Power Sources 162:1275– 1281

    Article  CAS  Google Scholar 

  31. Wang W, Kumta P N (2007) Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. J Power Sources 172:650–658

    Article  CAS  Google Scholar 

  32. Doh C-H, Veluchamy A, Lee D-J, Lee J-H, ** B-S, Moon S-I et al (2010) Comparative study on performances of composite anodes of SiO, Si and graphite for lithium rechargeable batteries. Bull Kor Chem Soc 31:1257–1261

    Article  CAS  Google Scholar 

  33. Li H, Huang X J, Chen L Q (1998) Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries. Electrochem Solid-State 1:241–243

    Article  CAS  Google Scholar 

  34. Wang X, Wen Z, Liu Y (2011) A novel nanosized silicon-based composite as anode material for high performance lithium ion batteries. Electrochim Acta 56:1512–1517

    Article  CAS  Google Scholar 

  35. Guerfi A, Charest P, Dontigny M, Trottier J, Lagacé M, Hovington P et al (2011) SiOx–graphite as negative for high energy Li-ion batteries. J Power Sources 196:5667–5673

    Article  CAS  Google Scholar 

  36. Park K-S, Min K-M, Seo S-D, Lee G-H, Shim H-W, Kim D-W (2013) Self-supported multi-walled carbon nanotube-embedded silicon nanoparticle films for anodes of Li-ion batteries. Mater Res Bull 48:1732–1736

    Article  CAS  Google Scholar 

  37. Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L et al (2013) Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2:138–145

    Article  CAS  Google Scholar 

  38. Fan Y, Zhang Q, **ao Q, Wang X, Huang K (2013) High performance lithium ion battery anodes based on carbon nanotube–silicon core–shell nanowires with controlled morphology. Carbon 59:264–269

    Article  CAS  Google Scholar 

  39. Collins J, Gourdin G, Foster M, Qu D (2015) Carbon surface functionalities and SEI formation during Li intercalation. Carbon 92:193–244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **anhua Hou or Shejun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hou, X., Zhang, M. et al. 3-Aminopropyltriethoxysilane-Assisted Si@SiO2/CNTs Hybrid Microspheres as Superior Anode Materials for Li-ion Batteries. Silicon 9, 97–104 (2017). https://doi.org/10.1007/s12633-015-9398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9398-0

Keywords

Navigation