Log in

Effects of the initiation position on the damage and fracture characteristics of linear-charge blasting in rock

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections I and II is less than that of Sections III and IV. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional (3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705.

    Article  Google Scholar 

  2. F.Y. Ren, T.A.M. Sow, R.X. He, and X.R. Liu, Optimization and application of blasting parameters based on the “pushing-wall” mechanism, Int. J. Miner. Metall. Mater., 19(2012), No. 10, p. 879.

    Article  Google Scholar 

  3. C.X. Ding, R.S. Yang, C. Chen, X.G. Zhu, C. Feng, and Q.M. **e, Space-time effect of blasting stress wave and blasting gas on rock fracture based on a cavity charge structure, Int. J. Rock Mech. Min. Sci., 160(2022), art. No. 105238.

  4. X.T. Liang, C.X. Ding, X.G. Zhu, J. Zhou, C. Chen, and X. Guo, Visualization study on stress evolution and crack propagation of jointed rock mass under blasting load, Eng. Fract. Mech., 296(2024), art. No. 109833.

  5. R.M. Ylitalo, Z.X. Zhang, and P. Bergström, Effect of detonator position on rock fragmentation: Full-scale field tests at Kevitsa open pit mine, Int. J. Rock Mech. Min. Sci., 147(2021), art. No. 104918.

  6. Y. Long, M.S. Zhong, Q.M. **e, X.H. Li, K.J. Song, and K. Liao, Influence of initiation point position on fragmentation by blasting in iron ore, [in] P.K. Singh and A. Sinha, Eds., Rock Fragmentation by Blasting, CRC Press, London, 2012, p. 111.

    Google Scholar 

  7. L.F. Triviño, B. Mohanty, and B. Milkereit, Seismic waveforms from explosive sources located in boreholes and initiated in different directions, J. Appl. Geophys., 87(2012), p. 81.

    Article  Google Scholar 

  8. Q.D. Gao, W.B. Lu, Z.D. Leng, Z.W. Yang, P. Yan, and M. Chen, Optimization of cut-hole’s detonating position in tunnel excavation, J. Vib. Shock, 37(2018), No. 9, p. 8.

    Google Scholar 

  9. Q.D. Gao, W.B. Lu, P. Yan, H.R. Hu, Z.W. Yang, and M. Chen, Effect of initiation location on distribution and utilization of explosion energy during rock blasting, Bull. Eng. Geol. Environ., 78(2019), No. 5, p. 3433.

    Article  Google Scholar 

  10. Q.D. Gao, Z.D. Leng, R.P. Yang, et al., Mathematical and mechanical analysis of the effect of detonator location and its improvement in bench blasting, Math. Probl. Eng., 2020(2020), art. No. 6058086.

  11. Q.D. Gao, J. **, Y.Q. Wang, Z.D. Leng, W.B. Lu, and H.X. Zhou, Study on influence law of initiation position on transmission of explosion energy and its comparison and selection in tunnel cutting blasting, China J. Highway Transp., 35(2022), No. 5, p. 140.

    Google Scholar 

  12. Z.X. Zhang, Effect of double-primer placement on rock fracture and ore recovery, Int. J. Rock Mech. Min. Sci., 71(2014), p. 208.

    Article  CAS  Google Scholar 

  13. Z.X. Zhang, Rock Fracture and Blasting: Theory and Applications, Butterworth-Heinemann, Amsterdam, 2016.

    Google Scholar 

  14. D.Y. Guo, C. Zhang, T.G. Zhu, and G.T. Li, Effect of detonating position of deep-hole cumulative blasting on coal seam cracking and permeability enhancement, J. China Coal Soc., 46(2021), No. S1, p. 302.

    Google Scholar 

  15. M. Chen, D. Wei, C.P. Yi, W.B. Lu, and D. Johansson, Failure mechanism of rock mass in bench blasting based on structural dynamics, Bull. Eng. Geol. Environ., 80(2021), No. 9, p. 6841.

    Article  Google Scholar 

  16. Y. Ju, C.D. **, S.J. Wang, L.T. Mao, K. Wang, and H.W. Zhou, 3-D fracture evolution and water migration in fractured coal under variable stresses induced by fluidized mining: In situ triaxial loading and CT imaging analysis, Energy Rep., 7(2021), p. 3060.

    Article  Google Scholar 

  17. Y.B. Wang, Z.J. Wen, G.Q. Liu, et al., Explosion propagation and characteristics of rock damage in decoupled charge blasting based on computed tomography scanning, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104540.

  18. Y. Ju, C.D. ** in deformed pore structures subjected to varying geostress via in situ computed tomography scanning and additively printed models, Int. J. Eng. Sci., 171(2022), art. No. 103615.

  19. R.D. Peng, Y.C. Yang, Y. Ju, L.T. Mao, and Y.M. Yang, Computation of fractal dimension of rock pores based on gray CT images, Chin. Sci. Bull., 56(2011), No. 31, p. 3346.

    Article  Google Scholar 

  20. C.X. Ding, R.S. Yang, Z. Lei, M. Wang, Y. Zhao, and H. Lin, Fractal damage and crack propagation in decoupled charge blasting, Soil Dyn. Earthquake Eng., 141(2021), art. No. 106503.

  21. Y. Ju, C.D. **, Y. Zhang, L.T. Mao, F. Gao, and H.P. **e, Laboratory in situ CT observation of the evolution of 3D fracture networks in coal subjected to confining pressures and axial compressive loads: A novel approach, Rock Mech. Rock Eng., 51(2018), No. 11, p. 3361.

    Article  Google Scholar 

  22. H.P. **e, Mathematical Foundation and Method in Fractal Application, Science Press, Bei**g, 1997.

    Google Scholar 

  23. C.X. Ding, R.S. Yang, and L.Y. Yang, Experimental results of blast-induced cracking fractal characteristics and propagation behavior in deep rock mass, Int. J. Rock Mech. Min. Sci., 142(2021), art. No. 104772.

  24. R.S. Yang, C.X. Ding, L.Y. Yang, Z. Lei, Z.R. Zhang, and Y.B. Wang, Visualizing the blast-induced stress wave and blasting gas action effects using digital image correlation, Int. J. Rock Mech. Min. Sci., 112(2018), p. 47.

    Article  Google Scholar 

  25. R.S. Yang, Y. Zhao, S.Z. Fang, J. Zhao, Y. Wang, and Z. Liu, Effect of the detonation method on the stress field distribution and crack propagation of spacer charge blasting, Chin. J. Eng., 45(2023), No. 5, p. 714.

    Google Scholar 

  26. Q. Li, W.L. Xu, Y. Guo, Y.L. Li, X.D. Wang, and S.S. Huo, Study on mechanical behaviors of crack dynamic propagation at the end of cylinder blastholes, Chin. J. Rock Mech. Eng., 38(2019), No. 2, p. 267.

    Google Scholar 

  27. Q. Li, W.L. Xu, Y. Guo, Z. Zhang, C. Lü, and Y. Tao, Propagation law of blasting crack at end of cylinder blasthole under uniaxial static pressure, J. Vib. Shock, 39(2020), No. 13, p. 91.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52204085), and the Interdisciplinary Research Project for Young Teachers of USTB, Fundamental Research Funds for the Central Universities (No. FRF-IDRY-21-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao Guo.

Ethics declarations

Renshu Yang is an editorial board member for this journal and not involved in the editorial review or the decision to publish this article. The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Yang, R., Guo, X. et al. Effects of the initiation position on the damage and fracture characteristics of linear-charge blasting in rock. Int J Miner Metall Mater 31, 443–451 (2024). https://doi.org/10.1007/s12613-023-2765-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2765-8

Keywords

Navigation