Log in

Effect of NiO–NiCr2O4 nano-oxides on the microstructural, mechanical and corrosion properties of Ni-coated carbon steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Pure Ni and its composites with different percentages of Ni–Cr nano-oxides were coated over carbon steel to assess the coating features and mechanical and corrosion behavior. A nano-oxide composite of Ni–Cr was first synthesized through chemical coprecipitation with uniform distribution constituents. Electrodeposition was employed to coat pure Ni and Ni–Ni–Cr) oxides (10, 20, 30, 40, and 50 g/L) on the steel sheets. Transmission electron microscope and field emission scanning electron microscope were adopted to examine the microstructure of powders and coatings, and X-ray diffraction analysis was employed to study the chemical composition. The microhardness, thickness, and wear resistance of the coatings were assessed, polarization and electrochemical impedance spectroscopy (EIS) tests were conducted to analyze the corrosion behavior, and the corresponding equivalent circuit was developed. Results showed flawless and crack-free coatings for all samples and uniform distribution of nano-oxides in the Ni matrix for the samples of 10–30 g/L. Agglomerated oxides were detected at high concentrations. Maximum microhardness (HV 661), thickness (116 µm), and wear resistance of coatings were found at 30 g/L. A three-loop equivalent circuit corresponded satisfactorily to all EIS data. The corrosion resistance increased with the nano-oxide concentration of up to 30 g/L but decreased at 40 g/L. The sample of 50 g/L showed the best corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. Wu, R.F. Chen, Z.R. Yang, Z.Y. He, Y. Zhou, and F.Z. Lv, Corrosion resistance of 45 carbon steel enhanced by laser graphene-based coating, Diam. Relat. Mater., 116(2021), art. No. 108370.

  2. A.Y. Ivannikov, V.I. Kalita, D.I. Komlev, et al., Investigation into improving microstructure and properties of plasma sprayed Ni coating via electromechanical treatment, J. Mater. Process. Technol., 266(2019), p. 442.

    Article  CAS  Google Scholar 

  3. M. Aghili, M.K. Yazdi, Z. Ranjbar, and S.H. Jafari, Anticorrosion performance of electro-deposited epoxy/amine functionalized graphene oxide nanocomposite coatings, Corros. Sci., 179(2021), art. No. 109143.

  4. L.H. Guo, Q. Huang, C. Zhang, et al., Study on the formation of Mn−P coatings with significant corrosion resistance on Q235 carbon steels by adjusting the ratio of phosphorus to manganese, Corros. Sci., 178(2021), art. No. 108960.

  5. J.C. Pereira, L.P.M. dos Santos, A.A.C. Alcanfor, et al., Effects of electrodeposition parameters on corrosion resistance of Zn−Sn coatings on carbon steel obtained from eutectic mixture based on choline chloride and ethylene glycol, J. Alloys Compd., 886(2021), art. No. 161159.

  6. A.M.K. Kirubaharan and P. Kuppusami, Corrosion behavior of ceramic nanocomposite coatings at nanoscale, [in] S. Rajendran, T.A. Nguyen, S. Kakooei, M. Yeganeh, and Y.X. Li, eds., Corrosion Protection at the Nanoscale, Elsevier, Amsterdam, 2020, p. 295.

    Chapter  Google Scholar 

  7. A. Bigos, M. Janusz-Skuza, M.J. Szczerba, et al., The effect of heat treatment on the microstructural changes in electrodeposited Ni−Mo coatings, J. Mater. Process. Technol., 276(2020), art. No. 116397.

  8. P. Kar, Anticorrosion and antiwear, [in] P.N. Tri, S. Rtimi, and C.M.O. Plamondon, eds., Nanomaterials-Based Coatings — Fundamentals and Applications, Elsevier, Amsterdam, 2019, p. 195.

    Chapter  Google Scholar 

  9. N.B. Singh and S. Agarwal, Nanocomposites: An overview, Emerg. Mater. Res., 5(2016), No. 1, p. 5.

    Google Scholar 

  10. M. Boroujerdnia, H. Ghayour, A. Monshi, R. Ebrahimi-Kahrizsangi, and F. Jamali-Sheini, Electroplating of Ni/Co-pumice multilayer nanocomposite coatings: Effect of current density on crystal texture transformations and corrosion behavior, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1299.

    Article  CAS  Google Scholar 

  11. H. Caliskan, P. Panjan, and C. Kurbanoglu, 3.16 hard coatings on cutting tools and surface finish, [in] M. Hashmi, ed., Comprehensive Materials Finishing, Elsevier, Amsterdam, 2017, p. 230.

    Chapter  Google Scholar 

  12. J. Li, O.C. Lin, C. Cheng, W.B. Wang, C.Y. Xu, and L.Q. Ren, Fabrication of a Ni/SiC composite coating on steel surface with excellent corrosion inhibition performance, J. Mater. Process. Technol., 290(2021), art. No. 116987.

  13. R.A. Hussain and I. Hussain, Fabrication and applications of nickel selenide, J. Solid State Chem., 277(2019), p. 316.

    Article  CAS  Google Scholar 

  14. K.J. Joshi and N.M. Shah, Study of hydroxyapatite nanoparticles synthesized using sono-chemical supported hydrothermal method, Mater. Today Proc., 47(2021), p. 505.

    Article  CAS  Google Scholar 

  15. M. Messaoud, F. Trabelsi, P. Kumari, A. Merenda, and L.F. Dumée, Recrystallization and coalescence kinetics of TiO2 and ZnO nano-catalysts towards enhanced photocatalytic activity and colloidal stability within slurry reactors, Mater. Chem. Phys., 252(2020), art. No. 123235.

  16. H. Mohammadzadeh and M. Barati, A comprehensive evaluation of non-isothermal simultaneous reduction and carburization kinetics of W−Ni oxide nano-composite powder, Mater. Chem. Phys., 272(2021), art. No. 125027.

  17. G.Y. Wei, J.K. Qu, Y.D. Zheng, T. Qi, and Q. Guo, Preparation of Cr2O3 precursors by hydrothermal reduction in the abundant Na2CO3 and Na2CrO4 solution, Int. J. Miner. Metall. Mater., 19(2012), No. 11, p. 978.

    Article  CAS  Google Scholar 

  18. H. Mohammadzadeh, H. Rezaie, H. Samim, M. Barati, and H. Razavizadeh, Synthesis of WC−Ni composite powders by thermochemical processing method based on co-precipitation, Mater. Chem. Phys., 149–150(2015), p. 145.

    Article  Google Scholar 

  19. S.Q. Wang, F.Q. **e, X.Q. Wu, and L.Y. Chen, CeO2 doped Al2O3 composite ceramic coatings fabricated on γ-TiAl alloys via cathodic plasma electrolytic deposition, J. Alloys Compd., 788(2019), p. 632.

    Article  CAS  Google Scholar 

  20. G. Jena, R.P. George, and J. Philip, Fabrication of a robust graphene oxide-nano SiO2-polydimethylsiloxane composite coating on carbon steel for marine applications, Prog. Org. Coat., 161(2021), art. No. 106462.

  21. D. Jiang, H.Z. Cui, H. Chen, X.F. Zhao, G.L. Ma, and X.J. Song, Wear and corrosion properties of B4C-added CoCrNiMo high-entropy alloy coatings with in-situ coherent ceramic, Mater. Des., 210(2021), art. No. 110068.

  22. N. Rojas, M. Sánchez-Molina, G. Sevilla, et al., Coated stainless steels evaluation for bipolar plates in PEM water electrolysis conditions, Int. J. Hydrogen Energy, 46(2021), No. 51, p. 25929.

    Article  CAS  Google Scholar 

  23. S. Arcaro, F.A. Berutti, A.K. Alves, and C.P. Bergmann, MW-CNTs produced by electrolysis of molten carbonate: Characteristics of the cathodic products grown on galvanized steel and nickel chrome electrodes, Appl. Surf. Sci., 466(2019), p. 367.

    Article  CAS  Google Scholar 

  24. Y.H. Zhang, S.H. Zhang, Y. He, et al., Mechanical properties and corrosion resistance of pulse electrodeposited Ni-B/B4C composite coatings, Surf. Coat. Technol., 421(2021), art. No. 127458.

  25. H.M.A. El-Lateef and M.M. Khalaf, Fabrication and characterization of alumina-silica/poly(o-toluidine) nanocomposites as novel anticorrosive epoxy coatings films on carbon steel, Microchem. J., 158(2020), art. No. 105129.

  26. E. Ghahabi, Y. Shajari, M. Razavi, I. Mobasherpour, and S.A.T. Fard, Effect of iron content on the wear behavior and adhesion strength of TiC−Fe nanocomposite coatings on low carbon steel produced by air plasma spray, Ceram. Int., 46(2020), No. 3, p. 2670.

    Article  CAS  Google Scholar 

  27. U.K. Chanda, A. Behera, S. Roy, and S. Pati, Evaluation of Ni−Cr−P coatings electrodeposited on low carbon steel bipolar plates for polymer electrolyte membrane fuel cell, Int. J. Hydrogen Energy, 43(2018), No. 52, p. 23430.

    Article  CAS  Google Scholar 

  28. V.S. Kathavate, D.N. Pawar, N.S. Bagal, and P.P. Deshpande, Role of nano ZnO particles in the electrodeposition and growth mechanism of phosphate coatings for enhancing the anti-corrosive performance of low carbon steel in 3.5% NaCl aqueous solution, J. Alloys Compd., 823(2020), art. No. 153812.

  29. R.P. Oliveira, D.C. Bertagnolli, E.A. Ferreira, L. da Silva, and A.S. Paula, Influence of Fe2+ oxidation and its antioxidant ascorbic acid as additive in Zn-Ni-Fe electrodeposition process on a low carbon steel, Surf. Coat. Technol., 349(2018), p. 874.

    Article  CAS  Google Scholar 

  30. D. Pritima, P. Padmanabhan, S. Marichamy, C. Sivakandhan, B. Stalin, and V. Dhinakaran, Material characterization and parametric effect on nickel-coated mild steel sheets by electroplating process, [in] A. Arockiarajan, M. Duraiselvam, and R. Raju, eds., Advances in Industrial Automation and Smart Manufacturing, Lecture Notes in Mechanical Engineering, Springer, Singapore, 2020, p. 465.

    Google Scholar 

  31. K. An, Y. Sui, Y.Q. Qing, et al., Synergistic reinforcement coating with anti-corrosion and UV aging resistance by filling modified CeO2 nanoflakes, Colloids Surf. A, 625(2021), art. No. 126904.

  32. V.P.M. Shajudheen, K.A. Rani, V.S. Kumar, A.U. Maheswari, M. Sivakumar, and S.S. Kumar, Comparison of anticorrosion studies of titanium dioxide and nickel oxide thin films fabricated by spray coating technique, Mater. Today Proc., 5(2018), No. 2, p. 8889.

    Article  CAS  Google Scholar 

  33. M. Li, Z.X. **, W. Zhang, et al., Comparison of chemical stability and corrosion resistance of group IV metal oxide films formed by thermal and plasma-enhanced atomic layer deposition, Sci. Rep., 9(2019), No. 1, art. No. 10438.

  34. A.A. Aal, Hard and corrosion resistant nanocomposite coating for Al alloy, Mater. Sci. Eng. A, 474(2008), No. 1–2, p. 181.

    Google Scholar 

  35. I.U. Haq, K. Akhtar, T.I. Khan, and A.A. Shah, Electrodeposition of Ni−Fe2O3 nanocomposite coating on steel, Surf. Coat. Technol., 235(2013), p. 691.

    Article  CAS  Google Scholar 

  36. S. Shanmugasamy, K. Balakrishnan, A. Subasri, S. Ramalingam, and A. Subramania, Development of CeO2 nanorods reinforced electrodeposited nickel nanocomposite coating and its tribological and corrosion resistance properties, J. Rare Earths, 36(2018), No. 12, p. 1319.

    Article  Google Scholar 

  37. S.A.N. Mehrabani, R. Ahmadzadeh, N. Abdian, A.T. Tabrizi, and H. Aghajani, Synthesis of Ni−GO nanocomposite coatings: Corrosion evaluation, Surf. Interfaces, 20(2020), art. No. 100546.

  38. A. Rasooli, M.S. Safavi, and M.K. Hokmabad, Cr2O3 nanoparticles: A promising candidate to improve the mechanical properties and corrosion resistance of Ni−Co alloy coatings, Ceram. Int., 44(2018), No. 6, p. 6466.

    Article  CAS  Google Scholar 

  39. M.T. Uddin, Y. Nicolas, C. Olivier, et al., Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production, Phys. Chem. Chem. Phys., 19(2017), No. 29, p. 19279.

    Article  CAS  Google Scholar 

  40. A.M. Oje, A.A. Ogwu, A.I. Oje, N. Tsendzughul, and S.U. Rahman, A comparative study of the corrosion and ion release behaviour of chromium oxide coatings exposed to saline, Ringer’s and Hank’s physiological solutions, Corros. Sci., 167(2020), art. No. 108533.

  41. M. Sajjadnejad, S.M.S. Haghshenas, V.T. Targhi, et al., Wear behavior of alkaline pulsed electrodeposited nickel composite coatings reinforced by ZnO nanoparticles, Wear, 468–469(2021), art. No. 203591.

  42. M. Koroghli, V. Alimirzaloo, H. Mohammadzadeh, and M. Kavanlouei, Sintering behavior of WC−Co with additives of TiC, VC, and (Ta,Nb)C: Microstructural and mechanical features, J. Mater. Eng. Perform., 31(2022), No. 1, p. 814.

    Article  CAS  Google Scholar 

  43. S.A. Bakar, N. Soltani, W.M.M. Yunus, E. Saion, and A. Bahrami, Structural and paramagnetic behavior of spinel NiCr2O4 nanoparticles synthesized by thermal treatment method: Effect of calcination temperature, Solid State Commun., 192(2014), p. 15.

    Article  CAS  Google Scholar 

  44. N.A. Noshahi, K. Nadeem, and M. Kamran, Role of Mn do** on magnetic properties of multiferroic NiCr2O4 nanoparticles, Ceram. Int., 47(2021), No. 8, p. 10643.

    Article  CAS  Google Scholar 

  45. A. Yousef and R. Tali, Preparation and characterization of spinel NiCr2O4 by co-precipitation method, Chem. Mater. Res., 9(2017), No. 4, p. 1.

    Google Scholar 

  46. D. Chen, Y. Yang, X.Q. Zhang, X.N. Wang, Y. Xu, and G.R. Qian, Mesoporous composite NiCr2O4/Al−MCM−41: A novel photocatalyst for enhanced hydrogen production, Int. J. Hydrogen Energy, 44(2019), No. 33, p. 18123.

    Article  CAS  Google Scholar 

  47. R.Z. Rasool, K. Nadeem, M. Kamran, F. Zeb, N. Ahmad, and M. Mumtaz, Comparison of anomalous magnetic properties of non-collinear CoCr2O4 and NiCr2O4 nanoparticles, J. Magn. Magn. Mater., 514(2020), art. No. 167225.

  48. H. Mohammadzadeh, H. Rezaie, M. Barati, D.W. Yu, and H.R. Samim, Kinetics of nonisothermal reduction and carburization of WO3−NiO nano-composite powders by CO−CO2, Int. J. Chem. Kinet., 51(2019), No. 7, p. 463.

    Article  CAS  Google Scholar 

  49. A. Saraby-Reintjes and M. Fleischmann, Kinetics of electrode-position of nickel from Watts baths, Electrochim. Acta, 29(1984), No. 4, p. 557.

    Article  CAS  Google Scholar 

  50. B.R. Tian and Y.F. Cheng, Electrolytic deposition of Ni−Co−Al2O3 composite coating on pipe steel for corrosion/erosion resistance in oil sand slurry, Electrochim. Acta, 53(2007), No. 2, p. 511.

    Article  CAS  Google Scholar 

  51. K. Aniołek, M. Kupka, and A. Barylski, Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation, Wear, 356–357(2016), p. 23.

    Article  Google Scholar 

  52. K.H. Hou, H.T. Wang, H.H. Sheu, and M.D. Ger, Preparation and wear resistance of electrodeposited Ni-W/diamond composite coatings, Appl. Surf. Sci., 308(2014), p. 372.

    Article  CAS  Google Scholar 

  53. H. Gül, F. Kılıç, S. Aslan, A. Alp, and H. Akbulut, Characteristics of electro-co-deposited Ni−Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings, Wear, 267(2009), No. 5–8, p. 976.

    Article  Google Scholar 

  54. R.A. Shakoor, R. Kahraman, U. Waware, Y.X. Wang, and W. Gao, Properties of electrodeposited Ni−B−Al2O3 composite coatings, Mater. Des., 64(2014), p. 127.

    Article  CAS  Google Scholar 

  55. P. Baghery, M. Farzam, A.B. Mousavi, and M. Hosseini, Ni−TiO2 nanocomposite coating with high resistance to corrosion and wear, Surf. Coat. Technol., 204(2010), No. 23, p. 3804.

    Article  CAS  Google Scholar 

  56. R. Badrnezhad, H. Pourfarzad, A.R. Madram, and M.R. Ganjali, Study of the corrosion resistance properties of Ni−P and Ni−P−C nanocomposite coatings in 3.5 wt % NaCl solution, Russ. J. Electrochem., 55(2019), No. 4, p. 272.

    Article  CAS  Google Scholar 

  57. A. Saadati, B.N. Khiarak, A.A. Zahraei, A. Nourbakhsh, and H. Mohammadzadeh, Electrochemical characterization of electrophoretically deposited hydroxyapatite/chitosan/graphene oxide composite coating on Mg substrate, Surf. Interfaces, 25(2021), art. No. 101290.

  58. M.M.K. Azar, H.S. Gugtapeh, and M. Rezaei, Evaluation of corrosion protection performance of electroplated zinc and zinc-graphene oxide nanocomposite coatings in air saturated 3.5 wt. % NaCl solution, Colloids Surf. A, 601(2020), art. No. 125051.

  59. R.Q. Li, J. Liang, Y.Y. Hou, and Q.W. Chu, Enhanced corrosion performance of Zn coating by incorporating graphene oxide electrodeposited from deep eutectic solvent, RSC Adv., 5(2015), No. 75, p. 60698.

    Article  CAS  Google Scholar 

  60. M.Y. Rekha and C. Srivastava, Microstructure and corrosion properties of zinc-graphene oxide composite coatings, Corros. Sci., 152(2019), p. 234.

    Article  Google Scholar 

  61. B. Szczygieł and M. Kołodziej, Corrosion resistance of Ni/Al2O3 coatings in NaCl solution, Trans. IMF, 83(2005), No. 4, p. 181.

    Article  Google Scholar 

  62. M.R. Barbosa, J.A. Bastos, J.J. García-Jareño, and F. Vicente, Chloride role in the surface of nickel electrode, Electrochim. Acta, 44(1998), No. 6–7, p. 957.

    Article  CAS  Google Scholar 

  63. J.O’M. Bockris and S.U.M. Khan, Surface Electrochemistry: A Molecular Level Approach, Springer Science & Business Media, New York, 1993.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hurieh Mohammadzadeh.

Additional information

Conflict of Interest

All authors declare that they have no conflicts of interest.

Supplementary Information

12613_2022_2584_MOESM1_ESM.docx

Effect of NiO–NiCr2O4 nano-oxides on the microstructural, mechanical and corrosion properties of Ni-coated carbon steel, approximately 1.42 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojallal, S., Mohammadzadeh, H., Aghaeinejad-Meybodi, A. et al. Effect of NiO–NiCr2O4 nano-oxides on the microstructural, mechanical and corrosion properties of Ni-coated carbon steel. Int J Miner Metall Mater 30, 1078–1092 (2023). https://doi.org/10.1007/s12613-022-2584-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2584-3

Keywords

Navigation