Log in

KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To solve low efficiency, environmental pollution, and toxicity for synthesizing zeolitic imidazolate frameworks (ZIFs) in organic solvents, a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons, which are used as precursors to prepare bimetallic selenide and N-doped carbon (NC) composites. Among them, Fe-Co-Se/NC retains the three-dimensional (3D) polyhedrons with mesoporous structure, and Fe-Co-Se nanoparticles are uniform in size and evenly distributed. When assessed as anode material for lithium-ion batteries, Fe-Co-Se/NC achieves an excellent initial specific capacity of 1165.9 mAh·g−1 at 1.0 A·g−1, and the reversible capacity of Fe-Co-Se/NC anode is 1247.4 mAh·g−1 after 550 cycles. It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites, the stable 3D structure of Fe-Co-Se/NCs guarantees the structural stability and wettability of the electrolyte, and the uniform distribution of Fe-Co-S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.X. Tang, H.Q. Ye, X. Ma, and K. Han, Effect of particle microstructure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1618.

    Article  CAS  Google Scholar 

  2. J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061.

    Article  CAS  Google Scholar 

  3. W. Liu, J.J. Yuan, Y.C. Hao, et al., Heterogeneous structured MoSe2-MoO3 quantum dots with enhanced sodium/potassium storage, J. Mater. Chem. A, 8(2020), No. 44, p. 23395.

    Article  CAS  Google Scholar 

  4. W. Wang, P.H. Li, H. Zheng, et al., Ultrathin layered SnSe nanoplates for low voltage, high-rate, and long-life alkali-ion batteries, Small, 13(2017), No. 46, art. No. 1702228.

  5. Y. Tian, Z.H. Sun, Y. Zhao, T.Z. Tan, H. Liu, and Z.H. Chen, One-dimensional Sb2Se3 nanorods synthesized through a simple polyol process for high-performance lithium-ion batteries, J. Nanomater., 2018(2018), art. No. 4273945.

  6. J.H. Jeong, D.W. Jung, and E.S. Oh, Lithium storage characteristics of a new promising gallium selenide anodic material, J. Alloys Compd., 613(2014), p. 42.

    Article  CAS  Google Scholar 

  7. N. Yu, L.X. Zou, C. Li, and K. Guo, In-situ growth of binder-free hierarchical carbon coated CoSe2 as a high performance lithium ion battery anode, Appl. Surf. Sci., 483(2019), p. 85.

    Article  CAS  Google Scholar 

  8. Y.C. Xue, X.M. Guo, M.R. Wu, et al., Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries, Nano Res., 14(2021), No. 10, p. 3598.

    Article  CAS  Google Scholar 

  9. W.W. Sun, C. Cai, X.X. Tang, L.P. Lv, and Y. Wang, Carbon coated mixed-metal selenide microrod: Bimetal-organic-framework derivation approach and applications for lithium-ion batteries, Chem. Eng. J., 351(2018), p. 169.

    Article  CAS  Google Scholar 

  10. J. Shi, X.M. Guo, S.J. Liu, et al., An altered nanoemulsion assembly strategy for in situ synthesis of Co2P/NP-C nano-spheres as advanced oxygen reduction electrocatalyst for zinc-air batteries, Compos. B Eng., 231(2022), art. No. 109589.

  11. Y.J. Qiao, H. Zhang, Y.X. Hu, et al., A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1611.

    Article  CAS  Google Scholar 

  12. M. Huang, K. Mi, J.H. Zhang, et al., MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage, J. Mater. Chem. A, 5(2017), No. 1, p. 266.

    Article  CAS  Google Scholar 

  13. Y. Hyeon, J. Lee, H. Qutaish, S.A. Han, et al., Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures, Energy Storage Mater., 33(2020), p. 95.

    Article  Google Scholar 

  14. D. Yarmolich, Y. Odarchenko, C. Murphy, et al., Novel binder-free carbon anode for high capacity Li-ion batteries, Nano Energy, 83(2021), art. No. 105816.

  15. W.F. Jiang, J.P. Sun, K.B. Lu, et al., 2D coordination polymer-derived CoSe2-NiSe2/CN nanosheets: The dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction, Dalton Trans., 50(2021), No. 28, p. 9934.

    Article  CAS  Google Scholar 

  16. I. Khan, N. Baig, S. Ali, M. Usman, S.A. Khan, and K. Saeed, Progress in layered cathode and anode nanoarchitectures for charge storage devices: Challenges and future perspective, Energy Storage Mater., 35(2021), p. 443.

    Article  Google Scholar 

  17. N.X. Shi, B.J. **, M. Huang, et al., Hierarchical octahedra constructed by Cu2S/MoS2⊂Carbon framework with enhanced sodium storage, Small, 16(2020), No. 23, art. No. 2000952.

  18. S.H. Wang, J. Teng, Y.Y. **e, et al., Embedding CoO nanoparticles in a yolk-shell N-doped porous carbon support for ultrahigh and stable lithium storage, J. Mater. Chem. A, 7(2019), No. 8, p. 4036.

    Article  CAS  Google Scholar 

  19. L.T. Wang, S.Q. Li, X.D. Zhang, and Y.M. Huang, CoSe2 hollow microspheres with superior oxidase-like activity for ultrasensitive colorimetric biosensing, Talanta, 216(2020), art. No. 121009.

  20. X.J. Wei, Y.B. Zhang, B.K. Zhang, et al, Yolk-shell-structured zinc-cobalt binary metal sulfide @ N-doped carbon for enhanced lithium-ion storage, Nano Energy, 64(2019), art. No. 103899.

  21. M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656.

    Article  CAS  Google Scholar 

  22. X.M. Guo, S.J. Liu, X.H. Wan, et al, Controllable solid-phase fabrication of an Fe2O3/Fe5C2/Fe-N-C electrocatalyst toward optimizing the oxygen reduction reaction in zinc-air batteries, Nano Lett., 22(2022), No. 12, p. 4879.

    Article  CAS  Google Scholar 

  23. X.M. Guo, W. Zhang, J. Shi, et al., A channel-confined strategy for synthesizing CoN-CoOx/C as efficient oxygen reduction electrocatalyst for advanced zinc-air batteries, Nano Res., 15(2022), No. 3, p. 2092.

    Article  CAS  Google Scholar 

  24. J.Y. Kim, J.W. Lee, J.H. Yun, et al, Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode, Adv. Funct. Mater., 30(2020), No. 15, art. No. 1910538.

  25. P. Zhang, Y.H. Wu, H.R. Sun, J.Q. Zhao, Z.M. Cheng, and X.H. Kang, MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1735.

    Article  CAS  Google Scholar 

  26. X.H. Wan, X.M. Guo, M.T. Duan, et al., Ultrafine CoO nanoparticles and Co-N-C lamellae supported on mesoporous carbon for efficient electrocatalysis of oxygen reduction in zinc-air batteries, Electrochim. Acta, 394(2021), art. No. 139135.

  27. D. Zhou, W.L. Song, X.G. Li, L.Z. Fan, and Y.H. Deng, Tin nanoparticles embedded in porous N-doped graphene-like carbon network as high-performance anode material for lithiumion batteries, J. Alloys Compd., 699(2017), p. 730.

    Article  CAS  Google Scholar 

  28. J. Yang, Y.H. Lin, B.S. Guo, et al., Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1621.

    Article  CAS  Google Scholar 

  29. Y. Li, M.H. Chen, B. Liu, Y. Zhang, X.Q. Liang, and X.H. **: An effective way to boost sodium ion storage, Adv. Energy Mater., 10(2020), No. 27, art. No. 2000927.

  30. M.T. Duan, M.R. Wu, K. Xue, et al., Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium-sulfur batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1647.

    Article  CAS  Google Scholar 

  31. F. Liu, S.Y. Liu, J.S. Meng, et al., Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage, Nano Energy, 73(2020), art. No. 104758.

  32. Z.P. Zhao, S.H. Li, C.Q. Li, Z.Y. Liu, and D. Li, Hollow CoS2@C nanocubes for high-performance sodium storage, Appl. Surf. Sci., 519(2020), art. No. 146268.

  33. Y. Zhao, X.L. Shi, S.J.H. Ong, et al., Enhancing the charge transportation ability of yolk-shell structure for high-rate sodium and potassium storage, ACS Nano, 14(2020), No. 4, p. 4463.

    Article  CAS  Google Scholar 

  34. M.Y. Gao, Y.C. Xue, Y.T. Zhang, et al., Growing Co-Ni-Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front., 9(2022), No. 15, p. 3933.

    Article  CAS  Google Scholar 

  35. N.N. Yao, Y. Zhang, X.H. Rao, et al., A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 876.

    Article  CAS  Google Scholar 

  36. J.B. Li, D. Yan, T. Lu, Y.F. Yao, and L.K. Pan, An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries, Chem. Eng. J., 325(2017), p. 14.

    Article  CAS  Google Scholar 

  37. X.Y. Meng, S.L. Deng, L. Feng, et al., Cd-doped FeSe nanoparticles embedded in N-doped carbon: A potential anode material for lithium storage, New J. Chem., 45(2021), No. 48, p. 22668.

    Article  CAS  Google Scholar 

  38. J. **, Y. Zheng, L.B. Kong, N. Srikanth, Q.Y. Yan, and K. Zhou, Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage, J. Mater. Chem. A, 6(2018), No. 32, p. 15710.

    Article  CAS  Google Scholar 

  39. W. Liu, M. Shao, W.Q. Zhou, et al., Hollow Ni-CoSe2 embedded in nitrogen-doped carbon nanocomposites derived from metal-organic frameworks for high-rate anodes, ACS Appl. Mater. Interfaces, 10(2018), No. 45, p. 38845.

    Article  CAS  Google Scholar 

  40. Q. Wang, Y.Y. Du, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1629.

    Article  CAS  Google Scholar 

  41. S.X. Lu, W.B. Luo, Z.S. Chao, Y.H. Liu, Z. Zhang, and J.C. Fan, New type of SnSe/CoSe@C anode for lithium-ion batteries, Energy Fuels, 36(2022), No. 4, p. 2260.

    Article  CAS  Google Scholar 

  42. J.L. Chen, X.M. Guo, M.Y. Gao, et al., Self-supporting dual-confined porous Si@c-ZIF@carbon nanofibers for high-performance lithium-ion batteries, Chem. Commun., 57(2021), No. 81, p. 10580.

    Article  CAS  Google Scholar 

  43. A.M. Zardkhoshoui and S.S.H. Davarani, Construction of complex copper-cobalt selenide hollow structures as an attractive battery-type electrode material for hybrid supercapacitors, Chem. Eng. J., 402(2020), art. No. 126241.

  44. L.F. Guo, S.Y. Zhang, J. **e, et al., Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515.

    Article  CAS  Google Scholar 

  45. M.Y. Gao, Z.H. Tang, M.R. Wu, et al., Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries, J. Alloys Compd., 857(2021), art. No. 157554.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52102100), the Natural Science Foundation of Jiangsu Province (No. BK2018 1469), and the Guangdong Basic and Applied Basic Research Foundation, China (No. 2020A1515110035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ngmei Guo or Tongxiang Fan.

Additional information

Conflict of Interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Xue, Y., Zhang, Y. et al. KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage. Int J Miner Metall Mater 30, 601–610 (2023). https://doi.org/10.1007/s12613-022-2539-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2539-8

Keywords

Navigation