Log in

Secondary phase precipitate-induced localized corrosion of pure aluminum anode for aluminum—air battery

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Understanding the influence of purities on the electrochemical performance of pure aluminum (Al) in alkaline media for Al—air batteries is significant. Herein, we comprehensively investigate secondary phase precipitate (SPP)-induced localized corrosion of pure Al in NaOH solution mainly based on quasi-in-situ and cross-section observations under scanning electron microscopy coupled with finite element simulation. The experimental results indicate that Al—Fe SPPs appear as clusters and are coherent with the Al substrate. In alkaline media, Al—Fe SPPs exhibit more positive potentials than the substrate, thus aggravating localized galvanic corrosion as cathodic phases. Moreover, finite element simulation indicates that the irregular geometry coupled with potential difference produces the non-uniform current density distribution inside the SPP cluster, and the current density on the Al substrate gradually decreases with distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Huang, D.D. Peng, Z.X. Yao, et al., Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER, Chem. Eng. J., 425(2021), art. No. 131533.

  2. S.M. Han, C.H. He, Q.B. Yun, et al., Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells, Coord. Chem. Rev., 445(2021), art. No. 214085.

  3. S. Zhang, Q. Fan, R. **a, and T.J. Meyer, CO2 reduction: From homogeneous to heterogeneous electrocatalysis, Acc. Chem. Res., 53(2020), No. 1, p. 255.

    Article  CAS  Google Scholar 

  4. X.D. Li, S.M. Wang, L. Li, Y.F. Sun, and Y. **e, Progress and perspective for in situ studies of CO2 reduction, J. Am. Chem. Soc., 142(2020), No. 21, p. 9567.

    CAS  Google Scholar 

  5. H.B. Yang, L. Wu, B. Jiang, et al., Discharge properties of Mg—Sn—Y alloys as anodes for Mg—air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705.

    Article  CAS  Google Scholar 

  6. S.G. Wu, S.Y. Hu, Q. Zhang, et al., Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum—air battery, Energy Storage Mater., 31(2020), p. 310.

    Article  Google Scholar 

  7. S.G. Wu, Q. Zhang, D. Sun, et al., Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum—air battery, Chem. Eng. J., 383(2020), art. No. 123162.

  8. Y.S. Liu, L.S. Yang, B. **e, et al., Ultrathin Co3O4 nanosheet clusters anchored on nitrogen doped carbon nanotubes/3D graphene as binder-free cathodes for Al—air battery, Chem. Eng. J., 381(2020), art. No. 122681.

  9. S.J. Liu, X.H. Wan, Y. Sun, et al., Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc—air batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2212.

    Article  CAS  Google Scholar 

  10. G.S. Peng, J. Huang, Y.C. Gu, and G.S. Song, Self-corrosion, electrochemical and discharge behavior of commercial purity Al anode via Mn modification in Al—air battery, Rare Met., 40(2021), No. 12, p. 3501.

    Article  CAS  Google Scholar 

  11. R. Mori, Recent developments for aluminum—air batteries, Electrochem. Energy Rev., 3(2020), No. 2, p. 344.

    Article  CAS  Google Scholar 

  12. R. Buckingham, T. Asset, and P. Atanassov, Aluminum—air batteries: A review of alloys, electrolytes and design, J. Power Sources, 498(2021), art. No. 229762.

  13. Q.F. Li and N.J. Bjerrum, Aluminum as anode for energy storage and conversion: A review, J. Power Sources, 110(2002), No. 1, p. 1.

    Article  CAS  Google Scholar 

  14. M.L. Doche, F. Novel-Cattin, R. Durand, and J.J. Rameau, Characterization of different grades of aluminum anodes for aluminum/air batteries, J. Power Sources, 65(1997), No. 1–2, p. 197.

    Article  CAS  Google Scholar 

  15. M.L. Doche, J.J. Rameau, R. Durand, and F. Novel-Cattin, Electrochemical behaviour of aluminium in concentrated NaOH solutions, Corros. Sci., 41(1999), No. 4, p. 805.

    Article  CAS  Google Scholar 

  16. Y.J. Cho, I.J. Park, H.J. Lee, and J.G. Kim, Aluminum anode for aluminum—air battery—Part I: Influence of aluminum purity, J. Power Sources, 277(2015), p. 370.

    Article  CAS  Google Scholar 

  17. Z.X. Yu, S.X. Hao, and Q.S. Fu, Electrochemical behaviors of different grades of pure aluminum in alkaline solution, Adv. Mater. Res., 652–654(2013), p. 853.

    Article  Google Scholar 

  18. Y.R. Liu, Q.L. Pan, H. Li, Z.Q. Huang, J. Ye, and M.J. Li, Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment, J. Alloys Compd., 792(2019), p. 32.

    Article  CAS  Google Scholar 

  19. P. **e, S.Y. Chen, K.H. Chen, et al., Enhancing the stress corrosion cracking resistance of a low-Cu containing Al—Zn—Mg—Cu aluminum alloy by step-quench and aging heat treatment, Corros. Sci., 161(2019), art. No. 108184.

  20. S.Q. Liu, X. Wang, Y.R. Tao, X. Han, and C.X. Cui, Enhanced corrosion resistance of 5083 aluminum alloy by refining with nano-CeB6/Al inoculant, Appl. Surf. Sci., 484(2019), p. 403.

    Article  CAS  Google Scholar 

  21. W.J. Liang, Q.L. Pan, Y.B. He, Y.C. Li, Y.C. Zhou, and C.G. Lu, Effect of aging on the mechanical properties and corrosion susceptibility of an Al—Cu—Li—Zr alloy containing Sc, Rare Met., 27(2008), No. 2, p. 146.

    Article  CAS  Google Scholar 

  22. S.S. Singh, J.J. Williams, T.J. Stannard, X.H. **ao, F.D. Carlo, and N. Chawla, Measurement of localized corrosion rates at inclusion particles in AA7075 by in situ three dimensional (3D) X-ray synchrotron tomography, Corros. Sci., 104(2016), p. 330.

    Article  CAS  Google Scholar 

  23. A. Chemin, D. Marques, L. Bisanha, A.D.J. Motheo, W.W. Bose Filho, and C.O.F. Ruchert, Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys, Mater. Des., 53(2014), p. 118.

    Article  CAS  Google Scholar 

  24. A.C. Vieira, A.M. Pinto, L.A. Rocha, and S. Mischler, Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al—Si—Cu—Mg alloys in 0.05 M NaCl, Electrochim. Acta, 56(2011), No. 11, p. 3821.

    Article  CAS  Google Scholar 

  25. H.W. Shi, Z.H. Tian, T.H. Hu, et al., Simulating corrosion of Al2CuMg phase by measuring ionic currents, chloride concentration and pH, Corros. Sci., 88(2014), p. 178.

    Article  CAS  Google Scholar 

  26. H.W. Shi, E.H. Han, F.C. Liu, T. Wei, Z.W. Zhu, and D.K. Xu, Study of corrosion inhibition of coupled Al2Cu—Al and Al3Fe—Al by cerium cinnamate using scanning vibrating electrode technique and scanning ion-selective electrode technique, Corros. Sci., 98(2015), p. 150.

    Article  CAS  Google Scholar 

  27. A. Kosari, F. Tichelaar, P. Visser, H. Zandbergen, H. Terryn, and J.M.C. Mol, Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloys, Corros. Sci., 177(2020), art. No. 108947.

  28. S.S. Wang, I.W. Huang, L. Yang, et al., Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys, J. Electrochem. Soc., 162(2015), No. 4, p. C150.

    Article  CAS  Google Scholar 

  29. Y.K. Zhu, K. Sun, and G.S. Frankel, Intermetallic phases in aluminum alloys and their roles in localized corrosion, J. Electrochem. Soc., 165(2018), No. 11, p. C807.

    Article  CAS  Google Scholar 

  30. G.S. Peng, J. Huang, Y.C. Gu, and G.S. Song, The discharge and corrosion behavior of Al anodes with different purity in alkaline solution, Int. J. Electrochem. Sci., 15(2020), p. 6892.

    Article  CAS  Google Scholar 

  31. K. Törne, A. Örnberg, and J. Weissenrieder, Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments, Acta Biomater., 48(2017), p. 541.

    Article  Google Scholar 

  32. R. Ly, K.T. Hartwig, and H. Castaneda, Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061, Corros. Sci., 139(2018), p. 47.

    Article  CAS  Google Scholar 

  33. C. Örnek and D.L. Engelberg, SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel, Corros. Sci., 99(2015), p. 164.

    Article  Google Scholar 

  34. S.K. Kairy, P.A. Rometsch, C.H.J. Davies, and N. Birbilis, On the electrochemical and quasi in situ corrosion response of the Q-phase (AlxCuyMgzSiw) intermetallic particle in 6xxx series aluminum alloys, Corrosion, 73(2017), No. 1, p. 87.

    Article  CAS  Google Scholar 

  35. J.S. Wu, D.D. Peng, Y.T. He, et al., In situ formation of decavanadate-intercalated layered double hydroxide films on AA2024 and their anti-corrosive properties when combined with hybrid sol gel films, Materials (Basel), 10(2017), No. 4, art. No. 426.

    Google Scholar 

  36. X.Q. Li, L.W. Wang, L. Fan, Z.Y. Cui, and M.X. Sun, Effect of temperature and dissolved oxygen on the passivation behavior of Ti—6Al—3Nb—2Zr—1Mo alloy in artificial seawater, J. Mater. Res. Technol., 17(2022), p. 374.

    Article  CAS  Google Scholar 

  37. Z.P. Wang, Y. Wang, B.W. Zhang, et al., Passivation behavior of 316L stainless steel in artificial seawater: Effects of pH and dissolved oxygen, Anti-Corros. Methods Mater., 68(2021), No. 2, p. 122.

    Article  CAS  Google Scholar 

  38. M.T. Wang, L.W. Wang, K. Zhao, Y.X. Liu, and Z.Y. Cui, Understanding the passivation behavior and film chemistry of four corrosion-resistant alloys in the simulated flue gas condensates, Mater. Today Commun., 31(2022), art. No. 103567.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51901018), the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (YESS, No. 2019 QNRC001), the Fundamental Research Funds for the Central Universities, China (No. FRF-AT-20-07, 06500119), the Natural Science Foundation of Bei**g Municipality, China (No. 2212037), the National Science and Technology Resources Investigation Program of China (No. 2019FY 101400), and the Southwest Institute of Technology and Engineering Cooperation Fund, China (No. HDHDW59 02020107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bowei Zhang or Junsheng Wu.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, H., Su, Y. et al. Secondary phase precipitate-induced localized corrosion of pure aluminum anode for aluminum—air battery. Int J Miner Metall Mater 30, 977–987 (2023). https://doi.org/10.1007/s12613-022-2533-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2533-1

Keywords

Navigation