Log in

Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work. Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca2+ system, whereas arsenopyrite was almost unaffected. In mineral mixtures tests, the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%. After ammonium oxalate and ethyl xanthate treatment, the hydrophobicity of pyrite increased significantly, and the contact angle increased from 66.62° to 75.15° and then to 81.21°. After ammonium oxalate treatment, the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface. Zeta potential measurements showed that after activation by ammonium oxalate, there was a shift in the zeta potential of pyrite to more negative values by adding xanthate. X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment, the O 1s content on the surface of pyrite decreased from 44.03% to 26.18%, and the S 2p content increased from 14.01% to 27.26%, which confirmed that the ammonium oxalate-treated pyrite surface was more hydrophobic than the untreated surface. Therefore, ammonium oxalate may be used as a selective activator of pyrite in the lime system, which achieves an efficient flotation separation of S—As sulfide ores under high alkalinity and high Ca2+ concentration conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Fletcher, W. Chimonyo, and Y.J. Peng, A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants, Miner. Eng., 156(2020), art. No. 106532.

  2. X.F. Zheng, S.T. Cao, Z.Y. Nie, et al., Impact of mechanical activation on bioleaching of pyrite: A DFT study, Miner. Eng., 148(2020), art. No. 106209.

  3. P.M. Ferreira, D. Majuste, E.T.F. Freitas, et al., Galvanic effect of pyrite on arsenic release from arsenopyrite dissolution in oxygen-depleted and oxygen-saturated circumneutral solutions, J. Hazard. Mater., 412(2021), art. No. 125236.

  4. M. Zanin, H. Lambert, and C.A. du Plessis, Lime use and functionality in sulphide mineral flotation: A review, Miner. Eng., 143(2019), art. No. 105922.

  5. X.H. Wang and K.S. Eric Forssberg, Mechanisms of pyrite flotation with xanthates, Int. J. Miner. Process., 33(1991), No. 1–4, p. 275.

    Article  CAS  Google Scholar 

  6. A.S. Stepanov, R.R. Large, E.S. Kiseeva, et al., Phase relations of arsenian pyrite and arsenopyrite, Ore Geol. Rev., 136(2021), art. No. 104285.

  7. A.M. Buswell, D.J. Bradshaw, P.J. Harris, and Z. Ekmekci, The use of electrochemical measurements in the flotation of a platinum group minerals (PGM) bearing ore, Miner. Eng., 15(2002), No. 6, p. 395.

    Article  CAS  Google Scholar 

  8. Y.H. Hu, S.L. Zhang, and G.Z. Qiu, Surface chemistry of activation of lime-depressed pyrite in flotation, Trans. Nonferrous Met. Soc. China, 10(2000), No. 6, p. 798.

    CAS  Google Scholar 

  9. S. Dzhamyarov, I. Grigorova, M. Ranchev, and I. Nishkov, Ammomiacal activation of lime depressed pyritea, [in] Proc. of XXIX International Mineral Processing Congress, Moscow, 2018.

  10. R. Murphy and D.R. Strongin, Surface reactivity of pyrite and related sulfides, Surf. Sci. Rep., 64(2009), No. 1, p. 1.

    Article  CAS  Google Scholar 

  11. O. Kenji, T. Tsunehiko, and S. Kozo, Effect on some ammonium salts on the flotation of iron sulphide minerals, Science Reports of the Research Institutes, Tohoku University. Ser. A, Physics, Chemistry and Metallurgy, 12(1960), p. 62.

    Google Scholar 

  12. X. **aojun and Ş. Kelebek, Activation of xanthate flotation of pyrite by ammonium salts following it’s depression by lime, Dev. Miner. Process., 13(2000), p. C8b.

    Google Scholar 

  13. Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150.

    Article  CAS  Google Scholar 

  14. X. Chen, G.H. Gu, and Z.X. Chen, Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1495.

    Article  CAS  Google Scholar 

  15. C. Han, D.Z. Wei, S.L. Gao, et al., Adsorption and desorption of butyl xanthate on chalcopyrite, J. Mater. Res. Technol., 9(2020), No. 6, p. 12654.

    Article  CAS  Google Scholar 

  16. S.A. Khoso, Y.H. Hu, F. Lü, et al., Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite, Trans. Nonferrous Met. Soc. China, 29(2019), No. 12, p. 2604.

    Article  CAS  Google Scholar 

  17. Y.F. Fu, W.Z. Yin, X.S. Dong, et al., New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1898.

    Article  CAS  Google Scholar 

  18. W.J. Zhao, M.L. Wang, B. Yang, Q.C. Feng, and D.W. Liu, Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper—ammonium species, Miner. Eng., 187(2022), art. No. 107796.

  19. S.R. Rao and J.A. Finch, A review of water re-use in flotation, Miner. Eng., 2(1989), No. 1, p. 65.

    Article  CAS  Google Scholar 

  20. R.S. Multani, H. Williams, B. Johnson, R.H. Li, and K.E. Waters, The effect of superstructure on the zeta potential, xanthate adsorption, and flotation response of pyrrhotite, Colloids Surf. A Physicochem. Eng. Aspects, 551(2018), p. 108.

    Article  CAS  Google Scholar 

  21. P. Galicia, N. Batina, and I. González, The relationship between the surface composition and electrical properties of corrosion films formed on carbon steel in alkaline sour medium: An XPS and EIS study, J. Phys. Chem. B, 110(2006), No. 29, p. 14398.

    Article  CAS  Google Scholar 

  22. A.P. Grosvenor, B.A. Kobe, and N.S. McIntyre, Studies of the oxidation of iron by water vapour using X-ray photoelectron spectroscopy and QUASES™, Surf. Sci., 572(2004), No. 2–3, p. 217.

    Article  CAS  Google Scholar 

  23. C.F. Jones, S. LeCount, R.S.C. Smart, and T.J. White, Compositional and structural alteration of pyrrhotite surfaces in solution: XPS and XRD studies, Appl. Surf. Sci., 55(1992), No. 1, p. 65.

    Article  CAS  Google Scholar 

  24. N.S. McIntyre and D.G. Zetaruk, X-ray photoelectron spectroscopic studies of iron oxides, Anal. Chem., 49(1977), No. 11, p. 1521.

    Article  CAS  Google Scholar 

  25. H. Chen, Z.L. Zhang, Z.L. Yang, et al., Heterogeneous fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS, Chem. Eng. J., 273(2015), p. 481.

    Article  CAS  Google Scholar 

  26. M. Kartal, F. **a, D. Ralph, et al., Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation, Hydrometallurgy, 191(2020), art. No. 105192.

  27. B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697.

    Article  CAS  Google Scholar 

  28. P. Li, J.Y. Lin, K.L. Tan, and J.Y. Lee, Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine, Electrochim. Acta, 42(1997), No. 4, p. 605.

    Article  CAS  Google Scholar 

  29. R.S.C. Smart, W.M. Skinner, and A.R. Gerson, XPS of sulphide mineral surfaces: Metal-deficient, polysulphides, defects and elemental sulphur, Surf. Interface Anal., 28(1999), No. 1, p. 101.

    Article  CAS  Google Scholar 

  30. R.P. Liao, Q.C. Feng, S.M. Wen, and J. Liu, Flotation separation of molybdenite from chalcopyrite using ferrate(VI) as selective depressant in the absence of a collector, Miner. Eng., 152(2020), art. No. 106369.

  31. M. Mullet, S. Boursiquot, M. Abdelmoula, J.M. Génin, and J.J. Ehrhardt, Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron, Geochim. Cosmochim. Acta, 66(2002), No. 5, p. 829.

    Article  CAS  Google Scholar 

  32. H.W. Nesbitt, G.M. Bancroft, A.R. Pratt, and M.J. Scaini, Sulfur and iron surface states on fractured pyrite surfaces, Am. Mineral., 83(1998), No. 9–10, p. 1067.

    Article  CAS  Google Scholar 

  33. P. Forson, M. Zanin, W. Skinner, and R. Asamoah, Differential flotation of pyrite and arsenopyrite: Effect of hydrogen peroxide and collector type, Miner. Eng., 163(2021), art. No. 106808.

  34. H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, and M. Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1887.

    Article  CAS  Google Scholar 

  35. Y.L. Mikhlin, A.S. Romanchenko, and I.P. Asanov, Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study, Geochim. Cosmochim. Acta, 70(2006), No. 19, p. 4874.

    Article  CAS  Google Scholar 

  36. C.L. Corkhill, P.L. Wincott, J.R. Lloyd, and D.J. Vaughan, The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by leptospirillum ferrooxidans, Geochim. Cosmochim. Acta, 72(2008), No. 23, p. 5616.

    Article  CAS  Google Scholar 

  37. H.W. Nesbitt, I.J. Muir, and A.R. Prarr, Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation, Geochim. Cosmochim. Acta, 59(1995), No. 9, p. 1773.

    Article  CAS  Google Scholar 

  38. H.W. Nesbitt and I.J. Muir, Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air, Mineral. Petrol., 62(1998), No. 1–2, p. 123.

    Article  CAS  Google Scholar 

  39. M.C. Costa, A.M. Botelho do Rego, and L.M. Abrantes, Characterization of a natural and an electro-oxidized arsenopyrite: A study on electrochemical and X-ray photoelectron spectroscopy, Int. J. Miner. Process., 65(2002), No. 2, p. 83.

    Article  CAS  Google Scholar 

  40. F.J. Grunthaner, P.J. Grunthaner, R.P. Vasquez, B.F. Lewis, J. Maserjian, and A. Madhukar, Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS, J. Vac. Sci. Technol., 16(1979), No. 5, p. 1443.

    Article  CAS  Google Scholar 

  41. Y. Du, Q. Lu, H.Y. Chen, Y.G. Du, and D.Y. Du, A novel strategy for arsenic removal from dirty acid wastewater via CaCO3—Ca(OH)2—Fe(III) processing, J. Water Process. Eng., 12(2016), p. 41.

    Article  Google Scholar 

  42. Y.F. Jia, L.Y. Xu, X. Wang, and G.P. Demopoulos, Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite, Geochim. Cosmochim. Acta, 71(2007), No. 7, p. 1643.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Yunnan Major Scientific and Technological Projects, China (No. 202202AG050015), and National Natural Science Foundation of China (No. 51504109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qicheng Feng or Jiushuai Deng.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, R., Wen, S., Feng, Q. et al. Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite. Int J Miner Metall Mater 30, 271–282 (2023). https://doi.org/10.1007/s12613-022-2505-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2505-5

Keywords

Navigation