Log in

Gene Cloning, Expression, and Antifungal Activities of Permatin from Naked Oat (Avena nuda)

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Thaumatin-like proteins (TLPs) are the products of a large, highly complex gene family involved in host defense. TLPs also belong to the pathogenesis-related family 5 (PR-5) of plant defense proteins. Most TLPs exhibit potential antifungal activities, and their accumulation in the plant is related to many physiological processes. In this study, a gene encoding TLP named permatin with an open reading frame of 678 bp encoding a protein of 225 amino acids with a calculated molecular mass of 23.5 kDa was cloned from naked oat leaves. Phylogenetic analysis revealed that permatin shares high homology with a number of other TLPs among diverse taxa. Model of structure by homology modeling showed that permatin consists of an acidic cleft region consistent with most TLPs. Recombinant NusA-permatin was overexpressed in Escherichia coli strain BL21 and purified by Heparin column combined with Sephacryl S-200 column. The protein exhibited antifungal activity to Fusarium oxysporum (half maximal inhibitory concentration, IC50 = 21.42 μM). Morphological observation showed that NusA-permatin can induce mycelium deformation of F. oxysporum, the cell membrane is blurred, and the diaphragm is not obvious. NusA-permatin also causes membrane permeabilization and reactive oxygen species accumulation in the mycelium of F. oxysporum. Permatin may play an important role in the disease resistance responses of plants against pathogen attacks through its antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hakim, Ullah A, Hussain A, Shaban M, Khan AH, Alariqi M, Gul S, Jun Z, Lin S, Li J, ** S, Munis M (2017) Osmotin: a plant defense tool against biotic and abiotic stresses. Plant Physiol Biochem 123:149–159

    PubMed  Google Scholar 

  2. van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    PubMed  Google Scholar 

  3. Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV (2017) Plant pathogenesis-related proteins PR-10 and PR-14 as components of innate immunity system and ubiquitous allergens. Curr Med Chem 24:1772–1787

    CAS  PubMed  Google Scholar 

  4. Musidlak O, Nawrot R, Gozdzicka-Jozefiak A (2017) Which plant proteins are involved in antiviral defense? Review on in vivo and in vitro activities of selected plant proteins against viruses. Int J Mol Sci 18(11):1–23

  5. Liu JJ, Sturrock R, Ekramoddoullah AK (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436

    CAS  PubMed  Google Scholar 

  6. O'Leary SJ, Poulis BA, von Aderkas P (2007) Identification of two thaumatin-like proteins (TLPs) in the pollination drop of hybrid yew that may play a role in pathogen defence during pollen collection. Tree Physiol 27:1649–1659

    CAS  PubMed  Google Scholar 

  7. Smole U, Bublin M, Radauer C, Ebner C, Breiteneder H (2008) Mal d 2, the thaumatin-like allergen from apple, is highly resistant to gastrointestinal digestion and thermal processing. Int Arch Allergy Immunol 147:289–298

    CAS  PubMed  Google Scholar 

  8. Min K, Ha SC, Hasegawa PM, Bressan RA, Yun DJ, Kim KK (2004) Crystal structure of osmotin, a plant antifungal protein. Proteins 54:170–173

    CAS  PubMed  Google Scholar 

  9. Dall'Antonia Y, Pavkov T, Fuchs H, Breiteneder H, Keller W (2005) Crystallization and preliminary structure determination of the plant food allergen Pru av 2. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:186–188

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Leone P, Menu-Bouaouiche L, Peumans WJ, Payan F, Barre A, Roussel A, Van Damme EJ, Rouge P (2006) Resolution of the structure of the allergenic and antifungal banana fruit thaumatin-like protein at 1.7-A. Biochimie 88:45–52

    CAS  PubMed  Google Scholar 

  11. Ghosh R, Chakrabarti C (2008) Crystal structure analysis of NP24-I: a thaumatin-like protein. Planta 228:883–890

    CAS  PubMed  Google Scholar 

  12. Skadsen RW, Sathish P, Kaeppler HF (2000) Expression of thaumatin-like permatin PR-5 genes switches from the ovary wall to the aleurone in develo** barley and oat seeds. Plant Sci 156:11–22

    CAS  PubMed  Google Scholar 

  13. Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR (2007) The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol 8:677–700

    CAS  PubMed  Google Scholar 

  14. Ho BK, Thomas A, Brasseur R (2003) Revisiting the Ramachandran plot: hard-sphere repulsion, electrostatics, and H-bonding in the alpha-helix. Protein Sci 12:2508–2522

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yan X, Qiao H, Zhang X, Guo C, Wang M, Wang Y, Wang X (2017) Analysis of the grape (Vitis vinifera L.) thaumatin-like protein (TLP) gene family and demonstration that TLP29 contributes to disease resistance. Sci Rep 7:4269

    PubMed  PubMed Central  Google Scholar 

  16. Lin KC, Bushnell WR, Szabo LJ, Smith AG (1996) Isolation and expression of a host response gene family encoding thaumatin-like proteins in incompatible oat-stem rust fungus interactions. Mol Plant-Microbe Interact 9:511–522

    CAS  PubMed  Google Scholar 

  17. Wan Q, Hongbo S, Zhaolong X, Jia L, Dayong Z, Yihong H (2017) Salinity tolerance mechanism of osmotin and osmotin-like proteins: a promising candidate for enhancing plant salt tolerance. Curr Genomics 18:553–556

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Breiteneder H, Ebner C (2000) Molecular and biochemical classification of plant-derived food allergens. J Allergy Clin Immunol 106:27–36

    CAS  PubMed  Google Scholar 

  19. Yasmin N, Saleem M (2014) Biochemical characterization of fruit-specific pathogenesis-related antifungal protein from basrai banana. Microbiol Res 169:369–377

    CAS  PubMed  Google Scholar 

  20. Wang Q, Li F, Zhang X, Zhang Y, Hou Y, Zhang S, Wu Z (2011) Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity. PLoS One 6:e16930

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chu KT, Ng TB (2003) Isolation of a large thaumatin-like antifungal protein from seeds of the Kweilin chestnut Castanopsis chinensis. Biochem Biophys Res Commun 301:364–370

    CAS  PubMed  Google Scholar 

  22. Acharya K, Pal AK, Gulati A, Kumar S, Singh AK, Ahuja PS (2013) Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol Biotechnol 54:609–622

    CAS  PubMed  Google Scholar 

  23. Jayaraj J, Punja ZK (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26:1539–1546

    CAS  PubMed  Google Scholar 

  24. Sav H, Rafati H, Oz Y, Dalyan-Cilo B, Ener B, Mohammadi F, Ilkit M, van Diepeningen AD, Seyedmousavi S (2018) Biofilm formation and resistance to fungicides in clinically relevant members of the fungal genus fusarium. J Fungi (Basel) 4:1–12

  25. Treikale O, Javoisha B, Feodorova-Fedotova L (2015) Occurrence of Fusarium species on small cereals in Latvia. Commun Agric Appl Biol Sci 80:551–554

  26. Li Y, Mao L, Yan D (2014) Quantification of Fusarium oxysporum in fumigated soils by a newly developed real-time PCR assay to assess the efficacy of fumigants for Fusarium wilt disease in strawberry plants. Pest Manag Sci 70:1669–1675

  27. Bellato S, Del FV, Redaelli R, Sgrulletta D, Bucci R, Magri AD, Marini F (2011) Use of near infrared reflectance and transmittance coupled to robust calibration for the evaluation of nutritional value in naked oats. J Agric Food Chem 59:4349–4360

    CAS  PubMed  Google Scholar 

  28. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  29. **g L, Guo D, Hu W, Niu X (2017) The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis. BMC Bioinf 18:166

    Google Scholar 

  30. Ashok KH, Venkatesh YP (2014) In silico analyses of structural and allergenicity features of sapodilla (Manilkara zapota) acidic thaumatin-like protein in comparison with allergenic plant TLPs. Mol Immunol 57:119–128

    Google Scholar 

  31. Kim S, Lee J, Jo S, Brooks CR, Lee HS, Im W (2017) CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J Comput Chem 38:1879–1886

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Abdelmoteleb A, Troncoso-Rojas R, Gonzalez-Soto T, Gonzalez-Mendoza D (2017) Antifungical activity of autochthonous Bacillus subtilis isolated from Prosopis juliflora against phytopathogenic Fungi. Mycobiology 45:385–391

    PubMed  PubMed Central  Google Scholar 

  33. Ma D, Li G, Zhu Y, **e DY (2017) Overexpression and suppression of Artemisia annua 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 1 gene (AaHDR1) differentially regulate artemisinin and terpenoid biosynthesis. Front Plant Sci 8:77

    PubMed  PubMed Central  Google Scholar 

  34. Guler-Gane G, Kidd S, Sridharan S, Vaughan TJ, Wilkinson TC, Tigue NJ (2016) Overcoming the refractory expression of secreted recombinant proteins in mammalian cells through modification of the signal peptide and adjacent amino acids. PLoS One 11:e0155340

  35. Jimenez-Lopez JC, Robles-Bolivar P, Lopez-Valverde FJ, Lima-Cabello E, Kotchoni SO, Alche JD (2016) Ole e 13 is the unique food allergen in olive: structure-functional, substrates docking, and molecular allergenicity comparative analysis. J Mol Graph Model 66:26–40

    CAS  PubMed  Google Scholar 

  36. Ho VS, Wong JH, Ng TB (2007) A thaumatin-like antifungal protein from the emperor banana. Peptides 28:760–766

    CAS  PubMed  Google Scholar 

  37. Shi Y, Jian L, Han D, Ren Y (2015) Isolation of an antifungal pathogenesis-related protein from naked oat (Avena nuda) seeds. Cereal Chem 92:44–49

    CAS  Google Scholar 

  38. Carmeille R, Croissant C, Bouvet F, Bouter A (2017) Membrane repair assay for human skeletal muscle cells. Methods Mol Biol 1668:195–207

    CAS  PubMed  Google Scholar 

  39. Dananjaya S, Udayangani R, Shin SY, Edussuriya M, Nikapitiya C, Lee J, De Zoysa M (2017) In vitro and in vivo antifungal efficacy of plant based laws one against Fusarium oxysporum species complex. Microbiol Res 201:21–29

    CAS  PubMed  Google Scholar 

  40. Correa A, Oppezzo P (2011) Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: advantages of high-throughput screening. Biotechnol J 6:715–730

    CAS  PubMed  Google Scholar 

  41. Kumar S, Singh N, Sinha M, Kaur P, Srinivasan A, Sharma S, Singh TP (2009) Isolation, purification, crystallization and preliminary crystallographic studies of amaryllin, a plant pathogenesis-related protein from Amaryllis belladonna. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:635–637

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jami SK, Swathi AT, Guruprasad L, Kirti PB (2007) Molecular, biochemical and structural characterization of osmotin-like protein from black nightshade (Solanum nigrum). J Plant Physiol 164:238–252

    CAS  PubMed  Google Scholar 

  43. Ramos MV, de Oliveira RS, Pereira HM, Moreno FB, Lobo MD, Rebelo LM, Brandao-Neto J, de Sousa JS, Monteiro-Moreira AC, Freitas CD, Grangeiro TB (2015) Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: insights into the mechanism of action. Phytochemistry 119:5–18

    CAS  PubMed  Google Scholar 

  44. Perri F, Della PS, Rufini F, Patamia M, Bonito M, Angiolella L, Vitali A (2009) Antifungal-protein production in maize (Zea mays) suspension cultures. Biotechnol Appl Biochem 52:273–281

    CAS  PubMed  Google Scholar 

  45. de Freitas CD, Lopes JL, Beltramini LM, de Oliveira RS, Oliveira JT, Ramos MV (2011) Osmotin from Calotropis procera latex: new insights into structure and antifungal properties. Biochim Biophys Acta 1808:2501–2507

    PubMed  Google Scholar 

  46. de Freitas CD, Nogueira FC, Vasconcelos IM, Oliveira JT, Domont GB, Ramos MV (2011) Osmotin purified from the latex of Calotropis procera: biochemical characterization, biological activity and role in plant defense. Plant Physiol Biochem 49:738–743

    PubMed  Google Scholar 

  47. Souza I, Ramos MV, Costa JH, Freitas C, Oliveira R, Moreno FB, Moreira RA, Carvalho C (2017) The osmotin of Calotropis procera latex is not expressed in laticifer-free cultivated callus and under salt stress. Plant Physiol Biochem 119:312–318

    CAS  PubMed  Google Scholar 

  48. Elhouiti F, Tahri D, Takhi D, Ouinten M, Barreau C, Verdal-Bonnin MN, Bombarda I, Yousfi M (2017) Variability of composition and effects of essential oils from Rhanterium adpressum Coss. & Durieu against mycotoxinogenic Fusarium strains. Arch Microbiol 199:1345–1356

    CAS  PubMed  Google Scholar 

  49. Bleackley MR, Wiltshire JL, Perrine-Walker F, Vasa S, Burns RL, van der Weerden NL, Anderson MA (2014) Agp2p, the plasma membrane transregulator of polyamine uptake, regulates the antifungal activities of the plant defensin NaD1 and other cationic peptides. Antimicrob Agents Chemother 58:2688–2698

    PubMed  PubMed Central  Google Scholar 

  50. van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70:3545–3570

    PubMed  Google Scholar 

  51. Palacin A, Tordesillas L, Gamboa P, Sanchez-Monge R, Cuesta-Herranz J, Sanz ML, Barber D, Salcedo G, Diaz-Perales A (2010) Characterization of peach thaumatin-like proteins and their identification as major peach allergens. Clin Exp Allergy 40:1422–1430

    CAS  PubMed  Google Scholar 

  52. Villa NY, Moussatche P, Chamberlin SG, Kumar A, Lyons TJ (2011) Phylogenetic and preliminary phenotypic analysis of yeast PAQR receptors: potential antifungal targets. J Mol Evol 73:134–152

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Aimanianda V, Simenel C, Garnaud C, Clavaud C, Tada R, Barbin L, Mouyna I, Heddergott C, Popolo L, Ohya Y, Delepierre M, Latge JP (2017) The dual activity responsible for the elongation and branching of beta-(1,3)-glucan in the fungal cell wall. MBio 8:e00619–e00617

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ibeas JI, Lee H, Damsz B, Prasad DT, Pardo JM, Hasegawa PM, Bressan RA, Narasimhan ML (2000) Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant J 23:375–383

    CAS  PubMed  Google Scholar 

Download references

Funding

We acknowledge that this project is supported by Key Research and Development Program of Shanxi Province of China (no.201603D211104), Special Funds of the Natural Science Foundation of TaiYuan, Shanxi Province (grant no. 11014908), and the fund for Shanxi “1331 project” collaborative innovation center and Research Project supported by Shanxi Scholarship Council of China (no.2017019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawei Shi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Han, D. & Shi, Y. Gene Cloning, Expression, and Antifungal Activities of Permatin from Naked Oat (Avena nuda). Probiotics & Antimicro. Prot. 11, 299–309 (2019). https://doi.org/10.1007/s12602-018-9422-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9422-y

Keywords

Navigation